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This paper considers the synchronization problem of chaotic systems. Functional projective lag 
synchronization (FPLS), which is a generalized synchronization concept recently developed, was 
investigated. Based on Lyapunov stability theory, a novel stability criterion for the synchronization 
between master and slave chaotic systems was derived. The proposed method was applied to unified 
chaotic systems in order to show the effectiveness of our results. 
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INTRODUCTION 
 
Since Lorenz (1963) has discovered chaotic phenome-
non in meteorology, various chaotic systems have 
introduced and studied (Chen et al., 1999; Lü et al., 2002; 
Rössler, 1976). Chaotic system is a sort of nonlinear 
systems that has unpredictable behaviour and sensitivity 
to initial conditions and parameter uncertainties. Due to 
these properties, synchronization problems easily found 
in many physical and biological systems such as heart 
beat, walking, coordinated robot motion and so on. The 
synchronization between chaotic systems is a more 
interesting issue, because chaotic systems are hard to 
expect their behaviour and very sensitive to initial 
conditions. Since, Pecora and Carroll’s (1990) method for 
synchronizing two identical chaotic systems, the various 
control schemes for the problem such as back-stepping 
design (Park, 2006; Vincent et al., 2007), static error 
feedback approach (Vincent, 2005; Li et al., 2005), 
observer-based control (Bowong, 2008), time-delay 
feedback approach (Park et al., 20081), parameters 
adaptive control (Yassen, 2006; Park et al., 2009; Lee et 
al., 2009), and dynamic feedback approach (Park et al., 
2007; Park et al., 20082) have been proposed. 

Originally, chaos synchronization refers to the state in 
which the master (or drive) and the slave (or response) 
systems have precisely identical trajectories for time  to  
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infinity. We usually regard such synchronization as 
complete synchronization or identical synchronization. 
During the last decade, various synchronization methods 
such as anti-synchronization (Song et al., 2007), phase 
synchronization (Rosenblum et al., 1996), projective 
synchronization (PS) (Mainieri et al., 1999), generalized 
synchronization (Park, 2007), lag synchronization (Yu et 
al., 2007; Li, 2009), and functional projective synchroni-
zation (Du et al., 2008; Runzi, 2008) have been 
investigated. Note that functional projective synchroniza-
tion is the state of the art and generalized concept of 
synchronization schemes. In this scheme, the error signal 
between master and slave systems can be synchronized 
up to a scaling function, but not as constant.  

On the other hand, time delays are ubiquitous between 
master and slave communication in real implementation. 
Thus, it is natural to consider time delay when we deal 
with synchronization problem. In this regard, there are 
strong needs to considered the functional projective lag 
synchronization (FPLS). In this paper, we consider a 
generalized synchronization problem for chaotic systems 
with disturbances. Note that, the disturbance was not 
considered in most of existing work when the synchroni-
zation problem was tackled. Based on Lyapunov method 
and linear matrix inequality (LMI) framework, an 
existence criterion of stabilizing controllers for FPLS of 
the systems was presented.  

This paper was organized as follows. In Section 2, the 
problem  statement and master-slave  synchronization  
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scheme was presented. In section 3, a numerical example 
was given to demonstrate the effectiveness of the proposed 
idea. Finally, a conclusion was given in final section.  
 
 
MAIN RESULTS 
 
Consider the following master (drive) and slave 
(response) chaotic systems: 
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where, nT

nxxxtx ℜ∈= ),,,()( 21 �  and  
nT

nyyyty ℜ∈= ),,,()( 21 �  are state vectors of master 

and slave systems, respectively, nnxf ℜ→ℜ:)(  is a 

continuous nonlinear vector function, nnA ×ℜ∈  is a 
constant matrix, )(1 td  and )(2 td  are the disturbance 

signals bounded in magnitude 11 )( dtd ≤ ,  22 )( dtd ≤  

and nT
nuuutu ℜ∈= ),,,()( 21 �  is the control input for 

synchronization between master system (1) and slave 
system (2). Let us define the error vector as 
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where, )(tα  is a continuously differentiable bounded 

function satisfying ht =)(max α , τ  is positive real time 

delay and nT
neeete ℜ∈= ),,,()( 21 �  

with )()()()( τα −−= txttyte iii . 
Here, we give the definition of functional projective lag 
synchronization (FPLS) and a related remark. 
Definition 1. It was said that, FPLS occurs between 
master system (1) and response to system (2) if the 
condition 0)()()(lim =−−∞→ τα txttyt  holds for a given 

scaling function )(tα . 
Remark 1. Chaos synchronization schemes such as 
complete synchronization, lag synchronization, anti-
synchronization, and projective synchronization are 
special case of FPLS. When, 1=α ; 0=τ , 1=α ; =τ positive 
constant, 1−=α ; 0=τ , and =α constant; 0=τ , then FPLS 
becomes complete synchronization, lag synchronization, 
anti-synchronization and projective synchronization, 
respectively. 
From the definition of error signal (3), then error 
dynamics is 
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Now, we have the following main result.  

 
 
 
 
Theorem 1. For a given positive constant ε , if there exists 
in a positive-definite matrix P  and a matrix Y  
satisfying the following LMI 
 

02 <++++ IYYPAPA TT ε ,                        (5) 
 
Then, master system (1) and slave system (2) can be 
synchronized up to a scaling function )(tα  via the 
controller: 
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where, K  and P  are control parameters which are 
determined later, and d  is a constant 
satisfying ddhdtdttd ≤+≤−− 1212 )()()( τα . 
 
Proof. Substituting the control input (6) into Equation (4) 
gives 
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For stability analysis, let us consider the following 
Lyapunov function 
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where, P  is the positive definite matrix defined in (5). 
 
The time derivative along the solution of system (7) is as 
follows: 
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where, the well-known inequality 

0,)/(0 >∀≤+≤ baabaab  is used and 

)2( IPKPKPAPAQ TT ε++++−= . Obviously, the  error
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Figure 1. Chaotic motion of unified system. 

 
 
 
system (7) is asymptotically stable if we can choose the 
matrix P , which makes matrix Q  be positive definite. 
Finally, by defining PKY = , the negativeness of Q  is 
equivalent to the LMI given in Equation (5). Hence, if the 
LMI (5) holds, then one can conclude that the error 
system (4) is asymptotically stable. This completes the 
proof.                                                           
Remark 2. In order to solve the LMI (5) given in Theorem 
1, Matlab’s LMI Control Toolbox can be utilized, which 
implements state-of-the-art interior-point algorithms, 
which is significantly faster than classical convex 
optimization algorithms (Boyd et al., 1994). The feedback 
gain matrix K  can be calculated from the YPK 1−=  
after finding the LMI solutions, P  and Y  from (5). 
 
 
NUMERICAL SIMULATION 
 
In this section, a numerical example was presented to 
show the effectiveness of our synchronization scheme. 
Consider the following unified chaotic master and slave 
systems (Lü et al., 2002): 
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It is well-known that the unified chaotic system (10) has 
chaotic behaviour for any ]1,0[∈s . It is called the general 
Lorenz, Lü, and Chen system when 8.0),8.0,0[ =∈ ss , 
and ]1,8.0(∈s , respectively. In order to see chaotic motion 
of the system (10), let us take the initial condition 

Tx )1,1,0()0( = . Figure 1 shows three chaotic motions of 
unified system at 8.0,0 == ss  and 1=s , respectively. 

Now, we can rewrite the system (10) in the form of 
Equation (1): 
 

,

3
8

00

01293528
01025)1025(

�
�
�
�

�

�

�
�
�
�

�

�

+−
−−

++−
=

s
ss

ss

A  ,

0

)(,

0

)(

21

31

21

31

�
�
�

�

�

�
�
�

�

�

−=
�
�
�

�

�

�
�
�

�

�

−=
yy

yyyf

xx

xxxf  

 

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=
)(
)(
)(

)(,
)(
)(
)(

)(

23

22

21

2

13

12

11

1

td

td
td

td

td

td
td

td .                  (11) 

 
In order to make functional projective lag 

synchronization of system (1) and (2) with disturbances, 
the scaling function is chosen as tt πα 2sin5.1)( += , and 
the constant τε ,, h  and d  are selected as 0.0001, 3, 
1.5 and 2, respectively. 

In the numerical simulation, the forth-order Runge-
Kutta method with sampling time 0.0001[sec] is used to 
solve differential equations in the paper. Initial conditions 
of master and slave systems are chosen as 

Tx )10,7,5()0( −−−=  and Ty )1,2,0()0( −= , respectively. 
External disturbances are selected by satisfying that : 

=)(11 td random number of 1.0)(11 ≤td , =)(12 td random 

number of 2.0)(12 ≤td , 0)(13 =td , =)(21 td random 

number of 2.0)(21 ≤td , 0)(22 =td , =)(23 td random 

number of 1.0)(23 ≤td .  
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Figure 2. Error signals for case 1. 

 
 
 

 
 
Figure 3. Error signals for case 2. 

 
 
 
Here, in order to solve the LMI given in Theorem 1, let us 
utilize MATLAB’s LMI Control Toolbox (Boyd et al., 1994), 
then, one can see that the LMI given in Eq. (9) is feasible 
and get possible solution sets for three cases as: 
 
Case 1: Lorenz system: 0=s  
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Case 2: Lü system: 8.0=s  
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Case 3: Chen system: 1=s  
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Figures 2, 3 and 4 shows that, error signals of case 1, 2 
and 3, respectively, go to zero as time goes infinity. This 
implies that, the FPLS of the system  (10) was achieved 
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Figure 4. Error signals for case 3. 

 
 
 
via our proposed control scheme. 
 
 
CONCLUSION 
 
In this paper, we have investigated the functional 
projective lag synchronization problem for a general class 
of unified chaotic systems. Based on Lyapunov method 
and LMI framework, the controller for our synchronization 
problem has designed to guarantee asymptotic stability 
for error dynamics. Numerical simulations show that our 
method is effective for FPLS. Finally, note that our control 
scheme was applied to various types of chaotic systems.  
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