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The permutation flow shop problem (PFSSP) is an NP-hard problem of wide engineering and theoretical 
background. In this paper, a biogeography based optimization (BBO) based on memetic algorithm, 
named HBBO is proposed for PFSSP. Firstly, to make BBO suitable for PFSSP, a new LRV rule based on 
random key is introduced to convert the continuous position in BBO to the discrete job permutation. 
Secondly, the NEH heuristic was combined with the random initialization to initialize the population with 
certain quality and diversity. Thirdly, a fast local search is used for enhancing the individuals with a 
certain probability. Fourthly, the pair wise based local search is used to enhance the global optimal 
solution and help the algorithm to escape from local minimum. Additionally, simulations and 
comparisons based on PFSSP benchmarks are carried out, showing that our algorithm is both effective 
and efficient.  
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INTRODUCTION 
 
Scheduling problems play an important role in both 
manufacturing systems and industrial process for 
improving the utilization of resources, and therefore it is 
crucial to develop efficient scheduling technologies 
(Stadtler, 2005). The permutation flow shop problem 
(PFSSP), one of the best known production scheduling 
problems, can be viewed as a simplified version of the 
flow shop problem, and had been proved to be non-
deterministic-polynomial-time (NP)-hard (Garey and 
Johnson, 1979; Rinnooy, 1976). Due to its significance in 
both academic and engineering applications, for the 
permutation flow shop with the criterion of minimizing the 
makespan or maximum lateness of jobs, different kinds of 
approaches have been proposed to solve PFSSP and 
obtained some achievements.  
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Since the pioneering work of Johnson (Johnson, 1954) 
on the two machine permutation flow shop problem, 
many methods have been introduced for solving PFSSP 
with the objective of minimizing the makespan and 
minimizing maximum lateness. However, due to 
unacceptable computation time, exact algorithms such as 
branch and bound method (Bansal, 1977; Croce et al., 
1996; 2002; Ignall and Schrage, 1965) and mixed integer 
linear programming method (Stafford, 1988) can only 
solve problems with instances of relatively small size. 

Heuristic algorithms were then proposed to solve the 
large-sized scheduling problems. This kind of algorithms 
can be broadly classified into three categories: 
Constructive heuristic algorithms, improvement heuristic 
algorithms and hybrid heuristic algorithms (Liu and Wang, 
2007). The constructive heuristics are mainly simple 
heuristics that build a feasible scheduling from scratch, 
as is seen in Palmer (1985), Gupta (1972), Ho and 
Chang (1991), Campbell et al. (1970), Rajendran (1993), 
Nawaz et al. (1983),  Taillard  (1990)  and  Framinan  and  



  

 
 
 
 
Leisten (2003). Constructive heuristics usually can obtain 
a nearly optimal solution in a reasonable computational 
time, while the solution qualities are not satisfactory. 

These heuristics are mainly meta-heuristics that start 
from previous generated solutions and subsequently 
approach the optimal solution by improving the solutions 
with domain dependent knowledge. The meta-heuristics 
mainly include simulated annealing algorithm (SA) (Ogbu 
and Smith, 1990; Osman and Potts, 1989), genetic 
algorithm (GA) (Reeves, 1995; Reeves and Yamada, 
1998), artificial immune system algorithm (AIS) (Orhan 
and Alper, 2004), particle swarm optimization algorithm 
(PSO) (Tasgetiren et al., 2007), ant colony algorithm 
(ACO) (Rajendran and Ziegler, 2004; Stützle, 1998), tabu 
search algorithm (Grabowski and Wodecki, 2004; 
Nowicki and Smutnicki, 1996; Revees, 1993), iterated 
local search algorithm(ILS) (Stützle, 1998), estimation of 
distribution algorithm (EDA) (Bassem and Eddaly, 2009) 
and biogeography based optimization (Simon, 2008). 
Improvement heuristics usually can obtain fairly 
satisfactory solutions, while the solution processes are 
always time-consuming. 

Rather recently, it has become evident that the concen-
tration on a sole meta-heuristic has some limitations. 
Researchers have found that a skilled combination of two 
or more meta-heuristic techniques, as called hybrid 
heuristics, can improve the performance especially when 
dealing with real-world and large scale problems. A lot of 
hybrid heuristic based algorithms have been investigated 
in the past few years. In the paper (Nearchou, 2004), a 
hybrid SA algorithm was introduced combining the 
operators of GA with local searches. In the paper (Tseng 
and Lin, 2009), the genetic algorithm is integrated into a 
novel local search scheme resulting into two hybrid 
algorithms: The insertion search and the insertion search 
with cut-and repair (ISCR).  

In the paper (Zhang et al., 2009), two effective 
heuristics are used during the local search to improve all 
generated chromosomes in every generation. In Wang 
and Zhang (2003), Wang Ling used the well-known 
Nawaz-Enscore-Ham (NEH) combined with GA to 
generate the initial population, and applied multi-
crossover operators to enhance the exploring potential. T. 
Murata proposed a hybrid genetic algorithm with local 
search (Murata et al., 1996). In the paper (Dipak et al., 
2007), a probabilistic hybrid heuristic that combined NEH 
with SA was proposed for solving PFSSP. In the paper 
Tasgetiren et al. (2007), applied the PSO algorithm to 
solve PFSSP by using a small position value rule, and 
the proposed algorithm, as called PSOVNS, was 
combined with the variable neighborhood-based local 
search algorithm. In the paper, Liu and Wang (2007), an 
efficient particle swarm optimization based mimetic 
algorithm (MA) for PFSSP to minimize the maximum 
completion time was proposed. In this algorithm, the 
PSO-based    searching   operators   and   some   special 
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local search operators were used to balance the 
exploration and exploitation abilities. In the paper (Stützle, 
1998), an ant-colony based algorithm was proposed to 
solve PFSSP by combining the fast local search to 
enhance the solutions. In the paper (Dong and Huang, 
2009), a hybrid algorithm that combined Framinan-
Leisten (FL) heuristic with iterated local search algorithm 
is proposed.  
     Regarding minimizing maximum lateness of permu-
tation flow shop scheduling, within our knowledge, only 
few researchers have used the minimizing maximum 
lateness as the performance measures of proposed 
algorithm. In the paper (Tasgetiren et al., 2004), this 
paper uses the PSOVNS to find the optimal solution. This 
algorithm can find 156 out of 160 upper bounds where 
155 of them were improved. In the paper, Zheng and 
Yamashiro (2010), proposed a new quantum differential 
evolutionary algorithm. This algorithm based on the basic 
quantum- inspired evolutionary algorithm (QEA) is 
encoded and decoded by using the quantum rotating 
angle and a simple strategy. This algorithm can find 157 
out of 160 upper bounds where 156 of them were 
improved.  

Among the existing meta-heuristic algorithms, an 
evolution technique, biogeography based optimization 
(Simon, 2008) is a new global optimization algorithm that 
is simple to be implement and has little or no parameters 
to be tuned based on biogeography theory, which is the 
study of the geographical distribution of the biological 
organisms. The BBO has a way of sharing information 
which is like other biology based algorithms. One of the 
remarkable advantages of BBO is that this algorithm can 
use migration, mutation operators to increase the 
population diversity. Compared with the 14 benchmarks, 
BBO is the fifth faster of the eight algorithm including 
ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. Up to 
now, most published works on BBO mainly focused on 
solving the complex continuous optimization problem (Ma 
and Simon, 2010; Ma, 2010; Gong et al., 2010; 
Bhattacharya and Chattopadhyay, 2010; Bhattacharya 
and Chattopadhyay, 2010; Roy et al., 2010). Within our 
knowledge, only few researchers have used the BBO 
algorithm to solve PFSSP. Therefore, this field of study is 
still in its early days, a large number of future researches 
are necessary in order to develop BBO based algorithms 
for solving PFSSP other than only for those areas the 
inventors originally focused on. 

In this paper, we propose a new hybrid BBO (HBBO) 
algorithm combing BBO with some local search 
mechanisms as well as fast local search for solving 
PFSSP. The crucial idea behind HBBO can be summa-
rized as follows. Firstly, to make HBBO suitable to solve 
PFSSP, a new LRV rule is proposed based on random 
key. This rule can help to convert the continuous 
encoding of BBO to a job permutation. Secondly, The 
NEH heuristic was combined with the random initialization  
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to initialize the population with certain quality and 
diversity. Thirdly, multiple different neighborhoods are 
designed and incorporated as a local search scheme into 
the searching process to enrich the searching behaviors 
and to avoid premature convergence.  Fast local search 
is proposed as a component of BBO, for the sake of 
improving BBO’s local search performance. Fourthly, the 
pair wise based local search is used to enhance the 
global optimal solution and help the algorithm to escape 
from local minimum.   
 
 
PERMUTATION FLOW SHOP SCHEDULING 
PROBLEM 
 
The permutation flow shop scheduling problem (PFSSP) 
in the paper consists of a set of jobs on a set of machines 
with the objective of minimizing the makespan. In 

permutation flow shop problem, n jobs nJJJ ,...,,N 21= are 

to be processed on a series of m machines 

nMMM ,...,,M 21=  sequentially. Each job consists of a 

set of operations },...,{ 1 jmii OOJ = . The processing time of 

job Ji on machines Mi is denoted by Pi,j (i=1,….,m, 
j=1,…,n). Each job can be processed on only one 
machine at a time and each machine can be processed 
on only one job at a time. Moreover, the operation cannot 
be pre-empted. The sequence in which the jobs to be 
processed are identical for each machine. The objective 
of the scheduling is to find way to minimize makespan.  

The permutation flow shop scheduling problem is often 

denoted by the symbols max
/ / /n m P C . A job permutation 

is denoted by },...,,{ 21 nππππ = , where n jobs will be 

sequenced through m machines. Let ( , )
j

C mπ denote the 

completion time of job 
j

π on machine m. The completion 

time of the permutation flow shop scheduling problem 

according to the processing sequence },...,,{ 21 nππππ =  

is shown as follows: 
 

1
,1

( ,1) ,C pππ =  

 

npjj ,...,2j,)1,(C)1,(C 1,1 =+= − πππ  

 

mipii i ,...,2,)1,(C),(C ,11 =+−= πππ  

 

minjpiCiCiC ijjj ,...,2,,...,2,))1,(),,(max(),( ,1 ==+−= − ππππ          (1) 

 
Then makespan can be defined as: 
 

max
( ) ( , )

n
C C mπ π=                                                           (2) 

 
The goal of the permutation flow shop problem  is  to  find  

 
 
 
 
the most suitable arrangement of π *: 
 

max
( *) ( , )

n
C C mπ π≤ π∀ ∈ ∏ .                                            (3) 

 
As for the flow shop scheduling with the due date 
constraint, let )( jL π  be denoted as the lateness of jobs 

jπ and be defined as,  

 

)(),()( jjj dmCL πππ −= .                                                (4) 

 
Maximum lateness )(max πL  of a permutation can be 

defined as  
 

))(),(max()(max jj dmCL πππ −= ,              (5) 

 

where )( jd π is the due date of jobs
jπ . The optimal 

solution *π   should satisfy the following criterion: 

 

)(*)( maxmax ππ LL ≤      π∀ ∈∏                          (6) 

 
and the sum of flow times of all jobs can be describes as  
 

∑
=

=

n

j

jsum mCC

1

*
),()( ππ ,                                                 (7) 

 
The optimal solution *π   should satisfy the following 

criterion: 
 

)(*)( ππ sumsum CC ≤ π∀ ∈ ∏                                             (8) 

 
 
BIOGEOGRAPHY-BASED OPTIMIZATION 

 
Biogeography based optimization (Simon, 2008) is a new 
evolution algorithm developed for the global optimization. 
It is inspired by the immigration and emigration of species 
between islands in search of more friendly habitats. Each 
solution is called an ”habitat” with an habitat suitability 
index (HSI) and represented by an n-dimension real 
vector. An initial individual of the habitat vectors is 
randomly generated. Those solutions that are good are 
considered to be habitats with a high HSI. Those that are 
poor are considered to be habitats with a low HSI. The 
high HSI tends to share their features with low HSI. Low 
HSI solutions accept a lot of new features from high HSI 
solutions. In BBO, habitat H is a vector of N (SIVs) 
initialized randomly and then follows migration and 
mutation step to reach the optimal solution. The new 
candidate habitat is generated from all of the solution in 
population by using the migration and mutation operators. 

In   BBO,   the   migration   strategy   is   similar  to   the  
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pro ced ure Habita t m igration 

Begin 

for i=1 to  NP 

      Select X i with  probab ility based  on 
i

λ  

if rand(0,1)< 
i

λ  then 

for  j=1 to  NP 

Select X j with probability  based on jµ  

if rand(0,1)< jµ  then   

Ran dom ly select an SIV σ  from X j 

Replace a random SIV in X i with σ  

en d if  

en d for 

end  if 

end for 

End. 
 

 
Scheme A. The algorithm of Habitat migration model. 

  
 
 

pro ced ure Mu tation  

Begin 

for i=1 to  NP 

      Compute the probability 
i

P  

Select SIV X i(j)with probability  based on 
i

P  

if  rand(0,1)<
i

m  then  

Replace Xi(j)  with a  randomly generated SIV 

end  if 

end for 

End. 
 

 
Scheme B. The algorithm of mutation model.  

 
 
 

evolutionary strategy in which many parents can 
contribute to a single offspring. BBO migration is used to 
change existing solution and modify existing island. 
Migration is a probabilistic operator that adjusts habitat Xi. 
The probability Xi modified is proportional to its immi-

gration rate iλ , and the source of the modified probability 

from Xj is proportional to the emigration rate jµ .Migration 

can be described as shown in Scheme A. 
Mutation is a probabilistic operator that randomly 

modifies habitat SIVs based on the habitat priori 
probability of existence. Very high HSI solutions and very 
low HSI solutions are equally improbable. Medium HSI 
solutions are relatively probable. The mutation rate m is 
expressed as: 

 

)
1

(
max

max
P

P
mm s−

=                                                            (9)                   

                                                                

where maxm is a user-defined parameter.  

This mutation scheme tends to increase diversity among 
the population. Mutation can be described as in Scheme 
B. The basic structure of BBO algorithm can be informally 
described with the algorithm in Scheme C. 
 

 
BBO for PFSSP 

 
Solution representation 

 
In BBO, the standard continuous encoding scheme of 
BBO can not be used to solve PFSSP directly. In order to 
apply BBO to PFSSP, one of the key issues is to 
construct a direct relationship between the job sequences 
and the vector of individuals in BBO. Qian and wang 
(2008) proposed a new a largest-order-value (LOV) rule 
based on random key representation to convert the 
individual to the job permutation. However, in this paper, 
we propose a random key based largest-ranked-value 
(LRV) representation. The LRV rule has the same effect 
as the LOV rule. Using the LRV rule, we can  convert  the  
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pro ce d ure Biog eog ra phy  ba sed  op tim iza tion 

Be gin 

In it ia lize  the  p opu la tion  P  ra nd om ly  a nd each hab itat  correspo nding  to a  p oten tial  so lu tion 

to the  given p ro blem . 

Eva lu ate  the  f itness  fo r e ach  indiv idua l in  P  

G = 1  

Wh ile the  te rm in at io n c rite ria is not  satis fied  do  

S or t the  p opu la tion  from  bes t to  wors t.  

  Fo r ea ch ha bita t, m ap th e H SI to the  nu m ber of sp ecie s S , the  im m ig ra tion  rate λ , an d the 

em igr at io n rate  µ . 

Prob abilis tica lly  use Im m igr atio n Islan d ba sed on  the  im m igra tion  ra te s.  

M o dify  the pop ulatio n with th e m ig rat ion o pe rator  sh own in H ab itat  m igrat ion . 

U pda te  the p roba bili ty  for  eac h ind iv id ua l. 

M u ta te  the pop ulatio n with th e m utation  ope ration . 

E va lu ate  the  fitn ess fo r each  in div id ua l in P. 

S or t the  p opu la tion  from  bes t to  wors t.  

G = G + 1 ; 

end  w hile  

End. 
 

 
Scheme C. The algorithm of Biogeography based optimization. 

  
 
 

Table 1. Solution representation of particle 
t

i
X . 

 

Job,  dimension 1 2 3 4 5 6 

Position 
t

ij
x  1.25 0.85 0.63 1.45 0.23 1.32 

Job, 
t

ij
π  3 4 5 1 6 2 

  
 
 

continuous real-code vector in BBO to a discrete job 
permutation. Specifically, in our LRV rule, the largest 
value of a vector is firstly picked as the first order of a job 
permutation. After that, the second largest value is picked 
as the second one. In this way, all the values of the 
vector will be handled to convert the vector to a job 
permutation. We use a simple example to illustrate the 
LRV rule in Table 1. In this example, because the largest 
value is 1.45, the dimension j=4 is picked and assigned a 
rank value of one; then the dimension j=6 is picked 
because the second largest value is 1.32; in the similar 
way, the job permutation can be obtained, that is, 

]2,6,1,5,4,3[=π . As we can see, such a conversion 

process is really simple, and it makes BBO applicable for 
solving PFSSP.  
 
 
Initial population 

 
This section will cover the important issues of initialization 
and follow the subsequent section by the essential 
concept of implementation. The BBO-based search is 
applied for exploration.  Initial swarm  is  often  generated 

randomly. In order to enhance the solution, in our paper, 
we take advantage of the NEH heuristic to produce 10% 
vector and the rest of the vectors are initialized with 
random vector values. Nawaz et al.’s (1983) NEH 
heuristic is regarded as the best heuristic for the PFSP. 
The NEH algorithm is based on the idea that the high 
processing time on all machines should be scheduled as 
early in the sequence as possible.  The NEH heuristic 
has two phases: (1) The jobs are sorted in non increasing 
sums of their processing time, and (2) A job sequence is 
established by evaluating the partial schedules based on 
the initial order of the first phase. The NEH can be 
described by the following three steps: 
 
Step 1: Compute the total processing time for each job on 
m machine: 
 

∀  job i , ,,,1 ni L= ∑=
=

m

j iji pP
1

                      (10) 

 

Step 2: Sort the jobs in non increasing order of
i

P , then 

the first two jobs are taken and the two partial possible 
schedules are evaluated. Choose the better sequence as 
a current sequence. 
Step 3: Take job i, ni ,,3 L= , and find the best schedule 

by placing it in all possible i positions in the sequence of 
jobs that are already scheduled. The best sequence 
would be selected for the next iteration. 
 
The NEH algorithm generated the job permutation, which 
should be converted to the  position  values  of  a  certain  
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p ro c ed ure  B iog eo g ra p hy  b a sed  o p tim iz a tio n  f or  p erm u ta tio n  flo w  s h op  

B e g in  

U s ing  N EH  h e u r isti c  to  p rod u c e  1 0%  v e cto rs  a n d  th e  re s t  o f  th e  v ec to rs  a re  in iti ali ze d  w i th 

r a nd o m  v e c to r va lu e s a n d  e ac h h a b ita t c o rre sp on d in g  to  a p o ten tia l s o lut io n t o t he  g iv e n

p ro b le m . 

A p pl y  th e  L R V  ru le  to  c o n v ert  th e  in d iv id u a l 0

iX to  th e  jo b  p erm u ta tio n 0 0 0

1 2[ , , , ]i i i i nπ π π π= L

( i=1 , L ,  N P ) . E v al ua te  f i tn e ss  fo r e v e r y  in d iv id u al a n d  de t e rm in e  th e  be st a n d s ub o p tim i al

in di v id ua l w ith  th e  o b je c tive  v a lu e ;  

G = 1  

W hil e  th e  te rm in at io n c r iter ia  i s n o t sa tis fie d  do  

S o rt th e  p o pu la tio n  fro m  b e st to  w o rs t.  

  F o r  e ac h  h a bi ta t ,  m a p  th e  H S I  to the  nu m b er  o f sp ec ie s  S ,  the  im m ig ra tio n  ra te λ ,  a nd  th e  

em ig ra tio n  ra te  µ .  

B eg in  A p p ly  e m ig r at io n o p e ra tio n  

P ro b ab il ist ic all y  us e  I m m igr a tio n I s la nd  b a sed  on  th e  im m ig ra tio n  ra te s .  

M od if y  the  p o p u la tio n w ith  th e  m ig r at ion  o p e ra to r s ho w n in  H ab ita t m i gr a tio n . 

en d  e m ig r a tio n o p era tio n  

U p d a te  th e  p rob a b ility  fo r  e ac h  in d iv id u a l.  

B eg in  m u ta tio n  o per a tio n  

M ut at e  the  p o p u la tio n w ith  th e  m u ta tio n  op e r at io n. 

en d  m u ta tio n  op e r at io n 

A p p ly  th e  L R V  ru le  to  c on ve r t th e  in div idu a l 
G

i
X to  th e  jo b 

p e rm u ta tio n ],,,,[ 321
G
in

G
i

G
i

G
i

G
i πππππ L=  ( i= 1 , L ,  N P ). E v a lu a te  f itn es s fo r e v ery  

in d iv id u a l an d  de te rm in e  th e  b e s t a nd  s ub o p tim ia l in d iv id u a l w i th t he  o b je c ti v e  v al ue ; 

S o rt th e  p o pu la tio n  fro m  b e st to  w o rs t.  

G = G + 1 ;  

en d  w h ile  

E nd . 
 

 
Scheme D. Biogeography based optimization for permutation flow shop scheduling. 

 
 
 

individual so that it can adapt to the BBO search. The 
conversion is implemented using the following equation: 
 

nisq
n

xx
xx iNEH

ii

iiNEH ,,2,1),1(
)(

,

min,max,

max,, L=−⋅
−

−=        (11) 

 

 where iNEHx ,  is the position value in the ith dimension of 

the individual.  
iNEHsq ,

 is the job index in the ith 

dimension of the permutation.  
 

The rest of the populations are initialized with random 
vector values. The initial continuous position values of 
other vector are first calculated by the following formula: 
 

max min min( )*
t

ijx x x r x= − +                                                   (12) 

 

where 0min =x , 0.4max =x  and r  is a uniform random 

number between 0 and 1. 
 
 
 BBO-BASED SEARCH 
 
The  biogeography   based   optimization   is   a   population   based 

stochastic optimization algorithm proposed by Simon in 2008, and 
the algorithm is similar to the genetic algorithm. The BBO algorithm 
adopts the real number encoding scheme, migration, mutation 
based on differential individuals and it has the better ability of 
overall search ability.  Recently, the BBO algorithm was developed 
to optimize multi-variable and multi-modal continuous functions. 
Since then, there had been no published work to deal with the 
permutation flow shop problem by using the biogeography based 
optimization. However, the BBO algorithm is performed on a 
continuous space. Therefore, the searching space of the BBO is not 
the permutation based solution space and we use the LRV rule to 
convert the continuous individual to the permutation vector. For the 
initial population, The NEH heuristic combined the random 
initialization to initialize the population with certain quality and 
diversity. 

The procedure of the biogeography based optimization for 
PFSSP can be summarized as shown in Scheme d. 

 
 
Fast local search 

 
Due to the parallel evolution framework of BBO, local search is 
easy to be incorporated for exploitation. Here, we present a fast 
local search which is embedded in BBO for solving PFSSP. The 
purpose of the local search is to find a better solution from the 
neighborhood of a solution. In this paper, three neighborhoods, that 
is, ‘Inverse, Insert and Swap’ are used to improve the diversity of 
population   and  enhance   the  quality  of  the  solution.  The  three  
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i-1 i+1i j j+1j-1

Job 

sequence

swap

i-1 i+1i j j+1j-1

Job 

sequence

insert

Job 

sequence

Job 

sequence

i-1 i+1i j j+1j-1

Job 

sequence

inverse

Job 

sequence

i-1 j-1j i j+1i+1

inverse

Job 

sequence

Job 

sequence

 Job  
sequence

 Job  

sequence 

 Job  
sequence 

 Job  
sequence 

 Job  
sequence

 Job  

sequence 

 Job  
sequence 

 Job  
sequence 

 
 
Figure 1. The neighborhood operations for local search. 

  
 
 
neighborhood operations are shown in Figure 1. The detail of these 
neighborhoods is as follows: 
 
Swap: Choose two different positions from a job permutation 
randomly and swap them. This neighborhood operation is illustrated 
in Figure 1. 
Insert: Choose two different positions from a job permutation 
randomly and insert the back one before the front. This 
neighborhood operation is illustrated in Figure 1. 
Inverse: Inverse the subsequence between two different random 
positions of a job permutation. This neighborhood operation is 
illustrated in Figure 1. 
 
In order to enhance the local search ability and get a better solution, 
we propose a new fast local search to enhance the makespan of 
every vector with the certain probability. The algorithm is performed 
by using the above three operations alternatively to avoid trapping 
in local optimal points, sometimes. 

A new individual enhancement scheme is proposed to combine 
the insert, swap and inverse operations. This method first selects 
an operation scheme from the three operations to operate an 
individual. The selected operation starts from an initial solution and 
attempts to move from the current solution  x   to  its  neighborhood 

'x . If the objective fitness of 'x  is smaller than the fitness of the 

current solution, 'x  is accepted as a new basic solution. After 

finishing one scheme, the search process keeps generating the 
individual’s neighborhood randomly and the solution is accepted 
until the stopping criterion is reached (Scheme g). 
 
 
Remarks  
 
A partial algorithm about 3 type operations is listed in this algorithm. 

spr  is the probability of executing swapping operation, ipr  is the 

probability of executing inserting operation, invpr  is the probability 

of executing inversing operation.  
 
 
Pair wise-based local search   

  
Here, a pair wise-based local search (Liu and Wang, 2007) is 
employed for the global optimal solution. The crucial idea of pair 
wise-based local search is to swap the job orders of two adjacent 
jobs   of   an   individual,  and  to  compare  the  previous  and   new  
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p ro c e d u re  P a ir w ise - b a se d  lo c a l  se a rc h  

B e g in  

    b es tX  p e r m u ta tio n  of g lo b a l  be s t so lu tio n  a t i te r at ion  t.  

A p p ly  th e  L R V  ru le  t o  c o nv e rt  t he  in d iv id u al
b e s t

X to  th e  jo b  

p e rm u tat io n ],,,[ 21 b e s tnb es tb e s tb es t ππππ L= .  E v a lu at e  fitn e s s  )( b es tf π fo r  b e s tX

in d iv id u al .  

b e s tXX =0  

b es tππ =0  

)( 00 Xi n s er tX =  

)( 00 ππ i n s e r t=  

i= 0 ; 

f o r  i= 1  to  n   

   i = i+ 1 ;  

   j = 0 ;  

f o r  j= 1  to  n  

   j = j+ 1 ;  

  E x e c u te  s w ap p in g  th e  p a ir of  jo b s  on  p o sit io n i a nd  p o si tio n j in  th e  in d i v id ua l 0X ,  a n d  o b t ain  

th e  in div idu a l
n e w

X . 

A p p ly  th e  L R V  ru le  to  c o n v e rt  the  in d iv id u a l n ewX to  t he  j o b  

p e rm u ta t io n ],,,[ 21 ne w nn ewn e wne w ππππ L= .  E v a lu a te  fitn e s s  )( n e wf π fo r n ewX  in d iv id u a l.  

If  ( )()(
b es tn ew

ff ππ − < 0 )  

b es tX = n ewX ;  

)( b es tf π =  )( ne wf π ;  

0
X =

n ew
X ;  

n e wb es t ππ = ;  

E n d  if               

E n d  f o r  ( j= the  n u m b e r  o f  jo b s)  

E n d  f o r  ( i= th e  nu m b e r  of  job s )        

E n d .  
 

 
Scheme F. The procedure of the pair wise-based local search algorithm. 

  
 
 

Table 2. The execution time for every operation of 
every job on every machine. 
 

 Job 1 Job 2 Job 3 Job 4 Job 5 

M1 3 4 7 8 10 

M2 12 15 6 10 8 

  
 
 
makespan. If the new makespan is lower than the previous, we will 
accept the new individual. This method can be also regarded as a 
local search for BBO to enhance the global optimal solution in every 
generation. It examines each possible pair wise interchange of the 
job in the first position. Then other position is given the same 
operation. Whenever there is an improvement in the objective 
function, the orders of the jobs are interchanged. Pair wise-based 
search can be viewed as a detailed neighborhood searching 
process to enhance the exploitation ability. We will use an example 
to describe the pair wise-based local search. Table 2 shows the 
execution time for every operation of every job on every machine. It 

is assumed that we want to improve the individual (5, 4, 2,1,3)π = , 

whose makespan is 42 and the corresponding Gantt chart is shown 
in Figure 2. By using the proposed pair wise-based local search, the 

next individual is (4,5, 2,1,3)π = , whose makespan is 41 and the 

corresponding Gantt chart is shown in Figure 3. The new individual 
is lower than the pervious individual. Thus, we will accept the new 
individual. Table 3 shows the makespans of the example in Table 2.  

The procedure of the pair wise-based local search algorithm for 
PFSSP is as shown in Scheme f. 

 
 

BBO-based hybrid algorithm 
 

Here, structure of this hybrid algorithm was discussed. There are 
mainly four strategies to update the individuals in the proposed 
algorithm. The LRV rule is used to convert the continuous position 
in BBO to the discrete job permutation. The NEH heuristic 
combined the random initialization to initialize the population with 
certain quality and diversity. The fast–based local search is used for 
enhancing the individuals with a certain probability, and therefore 
has a higher ability to approximate the optimal solution fast. The 
pair wise based local search is used to enhance the global optimal 
solution and help the algorithm to escape from local minimum. 

Based on the above section, solution representation, initial 
population, BBO-based local search, fast local search, pair wise-
based local search, the procedure of HBBO is proposed as follows: 

 
Step1: Initialize the parameters of BBO algorithm, containing the 

maximum migration rates E and I, the maximum rate maxm ,and the 

minimal emigration rate θ . Set G which denotes a generation, G=0. 

maxG  is the evolution generation. NP is the population size. D is 

the dimension or the number of the jobs. Keep = 2. 
Step 2: Initialize the population, using NEH heuristic to produce 
10% vectors and the rest of the vectors are  initialized  with  random  
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Figure  2. The Gantt chart of the original scheduling. 
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Figure 3. The Gantt chart of the active scheduling. 

  
 
 

Table 3. Makespan of the example shown in Table 2. 
 

 Job 1 Job 2 Job 3 Job 4 Job 5 

M1 4 9 14 22 34 

M2 14 22 28 38 41 
  
 
 
vector values and each habitat corresponding to a potential solution 

to the given problem. Let 0min =x , 0.4max =x  Generate 

)(*)1,0()0( minmaxmin, xxrandomxx ji −+= , 

NPi ,,1L= , Dj ,,1L= . 

Step 3: Evaluate the population. Apply the LRV rule to convert the 

individual 
0

iX to the job permutation 

],,,,[ 00

3

0

2

0

1

0

iniiii
πππππ L=  (i=1,L , NP). Evaluate fitness for 

every individual and sort the fitness from best to worst. Then 
determine the best and suboptimal individual with the objective 
value.  
Step 4: Perform the evolution. 

Step 4.1 (Compute phase): Compute immigration rate λ  and 

emigration rate µ  for each species count. )(iλ is the immigration 

rate for habitat i, )(iµ is the emigration rate for habitat i.  

Step   4.2:  (Migration  phase):   The    probability    Xi    modified   is  
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p r o c e d u r e  f a s t  l o c a l  s e a r c h  

B e g i n  
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X t o  t h e  j o b  
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I f  (
sp rq ≤≤0 ) 
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'

pX   
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E x e c u t e  i n s e r t i n g  s c h e m e  f o r  t h e  i n d i v i d u a l
p

X ,  a n d  o b t a i n  t h e  i n d i v i d u a l
'

p
X  

E l s e  ( i nvisis p rp rp rqp rp r ++≤≤+ )  

E x e c u t e  i n v e r s i n g  s c h e m e  f o r  t h e  i n d i v i d u a l pX ,  a n d  o b t a i n  t h e  i n d i v i d u a l
'

pX  

E n d  i f  

A p p l y  t h e  L R V  r u l e  t o  c o n v e r t  t h e  i n d i v i d u a l
'
pX t o  t h e  j o b  

p e r m u t a t i o n ],,,[ ''
2

'
1

'
p nppp ππππ L= .  E v a l u a t e  f i t n e s s  )( '

pf π f o r  
'
pX  i n d i v i d u a l .  

I f  ( )()(
'

pp
ff ππ − < = 0 ) 

pX =
'

pX ;  

)( pf π =  )( '

pf π ;  
'

pp
ππ = ;  

E n d  i f               

E n d  f o r                 

E n d .   
 
Scheme G. The procedure of the fast local search algorithm. 

  
 
 

proportional to its immigration rate iλ , and the source of the 

modified probability from Xj is proportional to the emigration rate jµ .  

Step 4.3 (Mutation phase): For each habitat, update the probability 
of its species count. Then mutate each habitat using the equation 

)
1

(
max

max
P

P
mm s−

=  and recompute each habitat’s fitness. 

Step 4.3 (Compute phase): Make sure that there are no duplicate 
individuals in the population. Any duplicates that are found are 
randomly mutated, so there should be a good chance that there are 
no duplicates in the population.  
Step 4.4 (Evaluating phase): Evaluate the population. Apply the 

LRV rule to convert the individual 
G

iX to the job 

permutation ],,,,[ 321

G

in

G

i

G

i

G

i

G

i πππππ L=  (i=1, L , NP). 

Evaluate fitness for every individual and sort the fitness from best to 
worst. Then determine the best and suboptimal individual with the 
objective value. 
Step 4.5 (Local search phase): Use the fast local search to enhance 
the best individual, and the pair wise-based local search operations 
on the suboptimal individual. Through these operations, we save 
the best one for the next generation. 

Step 5 (Stopping criteria): Set G=G+1.if G< maxG  then go to Step 4. 

 
 

NUMERICAL SIMULATION RESULTS AND 
COMPARISONS 
 
To test the performance of  the  proposed  HBBO  for  the  

permutation flow shop scheduling problem, computational 
simulations are carried out with some well-studied 
problems taken from the OR-Library. In this paper, 29 
problems from two classes of PFFSP test problems are 
selected. The first eight problems are instances car1, 
car2 through to car8 designed by Cariler (1978). The 
second 21 problems are instances rec01, rec03 through 
to rec41 designed by Reeves and Yamada (1998). The 
third 120 instances are from Taillard (1993) and the last 
problems sets are called DMU problems from Demirkol et 
al. (1998), containing 160 problems for our experiments. 
So far, these problems have been widely used as 
benchmarks to certify the performance of algorithms by 
many researchers.  

The HBBO is coded in MATLAB 7.0, and in our 
simulation, numerical experiments are performed on a 
PC with Pentium 3.0 GHz Processor and 1.0 GB memory. 
In HBBO, each instance is independently executed 15 
times for every algorithm for comparison. The parameters 

are set as follows: The population size=30, maxG =300, 

mutation probability P=0.01. 
 
 
Comparisons of BBO, HBBO 
 
The statistical performances of BBO and HBBO are 
shown in Table 4. In this table, C* is the optimal 
makespan   or   lower  bound  value  known  so  far.  BRE  
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Table 4. Comparisons of BBO and HBBO. 
 

Problem n/m 
C* BBO HBBO 

 BRE ARE WRE avgt
 BRE ARE WRE avgt

 
Car1 11/5 7038 0 0 0 0 0 0 0 0 

Car2 13/4 7166 0 0 0 0.7813 0 0 0 0.06 

Car3 12/5 7312 0 1.0708 1.1898 0.8125 0 0 0 0.26 

Car4 14/4 8003 0 0 0 0.0313 0 0 0 0 

Car5 10/6 7720 0 0.9547 1.3083 0.7656 0 0 0 0.03 

Car6 8/9 8505 0.7643 0.9500 2.6220 0.5938 0 0 0 0.06 

Car7 7/7 6590 0 0 0 0 0 0 0 0 

Car8 8/8 8366 0 0 0 0.1094 0 0 0 0.03 

Rec01 20/5 1247 0.1604 0.8099 2.6464 1.1563 0 0.016 0.1604 11.45 

Rec03 20/5 1109 0.6312 0.7484 1.1722 1.1719 0 0 0 0.8875 

Rec05 20/5 1242 0.2415 0.3704 0.8857 1.1406 0.2415 0.2415 0.2415 11.6875 

Rec07 20/10 1566 1.1494 3.3844 3.8314 1.2031 0 0 0 2.2813 

Rec09 20/10 1537 2.2121 2.3878 2.4073 1.1875 0 0 0 0.9688 

Rec11 20/10 1431 0.2795 2.4319 3.2145 1.2188 0 0 0 0.5781 

Rec13 20/15 1930 1.2953 2.3109 2.9534 1.2031 0 0.2383 0.9845 14.5625 

Rec15 20/15 1950 1.1795 1.1846 1.2308 1.1875 0 0.1744 0.6667 14.6563 

Rec17 20/15 1902 2.2608 3.2282 4.5216 1.2188 0 0.2261 1.1567 14.5313 

Rec19 30/10 2093 1.3856 2.6899 3.7745 1.6250 0.2867 0.4013 0.8600 32.4219 

Rec21 30/10 2017 1.6361 1.9683 2.8260 1.5781 0.1487 1.2692 1.4378 32.2344 

Rec23 30/10 2011 2.1382 3.1328 5.5196 1.7031 0.3987 0.4525 0.4973 32.2031 

Rec25 30/15 2513 3.2630 4.3016 5.0537 1.6250 0 0.5412 1.1540 36.3750 

Rec27 30/15 2373 1.6435 2.7729 3.5398 1.6563 0.2107 0.4256 0.9692 36.8281 

Rec29 30/15 2287 1.6178 3.1351 3.9790 1.6563 0 0.7346 1.9182 36.8750 

Rec31 50/10 3045 2.5944 3.0049 3.3498 2.5156 0.2627 0.4499 1.1494 108.8438 

Rec33 50/10 3114 0.9313 0.9891 0.9955 2.4375 0 0.4110 0.8349 108.9063 

Rec35 50/10 3277 0.2441 0.4333 0.7629 2.5938 0 0 0 3.6719 

Rec37 75/20 4951 4.7667 5.3282 5.9584 3.7188 1.3533 1.7592 2.2622 368.1250 

Rec39 75/20 5087 3.4598 4.0849 4.4820 3.7344 0.8649 1.2168 1.9265 365.7188 

Rec41 75/20 4960 4.9194 5.3750 5.7661 3.7656 1.5121 1.9516 2.7823 370.0625 

Average   1.3370 1.9672 2.5514 1.4618 0.1820 0.3624 0.6207 55.3210 
  
 
 

represents the best relative error to C*, ARE denotes the 
average relative error to C*, and WRE represents the 

worst relative error to C*. avgt  Denoted the time to reach 

the best solution in each run average over R runs in 
seconds. The performance measures employed in our 
experiment, BRE, ARE, WRE are defined: 
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From Table 4, it can be seen that both HBBOs provide 
better performance than BBO for almost all benchmarks. 
The HBBO can provide better solutions than the BBO 
algorithm. This demonstrates the effectiveness of the fast 
local search and pairwise-based local search in HBBO. 

From Table 4, the avgt  of HBBO is more than the BBO. 

The cause of consuming the time is that the local 
searches need to consume some time. Additionally, in 
Table 4, we can also see that, for the problems of the 
rec01-rec41, the optimal results obtained by the HBBO 
are closer to C* than BBO. Therefore, in the final HBBO 
algorithm, these two local searches will be used in the 
algorithm. From the results, this demonstrates that the 
global searching ability of HBBO is effective and HBBO is 
very suitable for PFSSP. To illustrate the experimental 
results more intuitively, we will set the car06 as  an  example. 
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Figure 4. Convergence curves for different algorithms for Car06. 

  
 
 

This instance has a lot of local optimal so that it is difficult 
to find the optimal solution. The convergence rate of 
HBBO algorithm could be found in Figure 4. It can be 
seen that at the iteration of 28, HBBO can find the Car’s 
optimal of 8366. 
 
 
Comparisons of HBBO, HDE (Qian and wang, 2008) 
and OSA 

 
In order to show the effectiveness of HBBO, we carry out 
a simulation to compare our HBBO with another DE 
based algorithm HDE (Qian and Wang,  2008)  and  OSA 

(Osman and Potts, 1989). HDE applies the parallel 
evolution mechanism of DE to perform effective 
exploration (global search), but it also adopts problem-
dependent local search methodology to adequately 
perform exploitation (local search). OSA’s performance is 
an efficient algorithm which uses insert to construct the 
neighborhood. The experimental result is listed in Table 5. 
SD denotes the standard deviation of the makespan. 
From Table 5, it is shown that the BRE, and ARE values 
obtained by HBBO are better than those resulting from 
HDE and OSA for all instances. For the OSA, this 
algorithm only performs better than the HBBO for instance 
rec39. For the rest  problems,  HBBO  can  provide  better 
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Table 5. Comparisons of HDE, OSA and HBBO. 
 

Problem 
HDE OSA HBBO 

BRE ARE SD BRE ARE SD BRE ARE SD 

Car1 0 0 0 0 0 0 0 0 0 

Car2 0 0 0 0 0 0 0 0 0 

Car3 0 0.536 44.352 0 0.625 47.188 0 0 0 

Car4 0 0 0 0 0 0 0 0 0 

Car5 0 0.593 49.537 0 0.801 50.725 0 0 0 

Car6 0 0.153 27.406 0 2.093 274.705 0 0 0 

Car7 0 0.448 60.219 0 1.483 114.208 0 0 0 

Car8 0 0 0 0 2.297 254.627 0 0 0 

Rec01 0 0.152 0.447 0.160 0.160 0 0 0.016 0.6325 

Rec03 0 0.153 1.252 0 0.189 1.853 0 0 0 

Rec05 0.242 0.386 3.327 0.242 0.588 4.620 0.2415 0.2415 0 

Rec07 0 0.920 7.589 0 0.434 11.593 0 0 0 

Rec09 0 0.273 11.593 0 0.690 12.385 0 0 0 

Rec11 0 0 0 0 2.215 37.600 0 0 0 

Rec13 0.259 0.705 8.566 0.311 1.793 14.691 0 0.2383 5.6411 

Rec15 0.051 0.995 14.961 0.718 1.569 16.071 0 0.1744 5.3375 

Rec17 0.368 1.309 11.874 1.840 3.796 36.721 0 0.2261 7.0404 

Rec19 0.287 0.908 9.104 0.287 0.803 9.484 0.2867 0.4013 5.0596 

Rec21 0.198 1.284 9.171 1.438 1.477 1.687 0.1487 1.2692 8.3293 

Rec23 0.497 0.696 10.625 0.497 0.845 10.822 0.3987 0.4525 0.7379 

Rec25 0.676 1.429 16.489 1.194 1.938 15.063 0 0.5412 8.1131 

Rec27 0.843 1.197 4.600 0.843 1.845 21.055 0.2107 0.4256 6.4541 

Rec29 0.525 1.299 13.342 0.612 2.882 38.831 0 0.7346 6.6299 

Rec31 0.427 1.192 13.107 0.296 1.333 30.394 0.2627 0.4499 8.0836 

Rec33 0.353 0.787 4.743 0.128 0.732 7.315 0 0.4110 12.2638 

Rec35 0 0 0 0 0 0 0 0 0 

Rec37 1.697 2.632 33.410 2.000 2.751 25.433 1.3533 1.7592 13.6255 

Rec39 1.278 1.543 7.836 0.767 1.240 12.306 0.8649 1.2168 18.9529 

Rec41 1.714 2.615 36.387 1.734 2.726 39.378 1.5121 1.9516 18.8668 

Average 0.325 0.766 13.792 0.451 1.287 37.543 0.1820 0.3624 4.3368 
  
 
 

solutions. The SD value of the proposed algorithm is also 
much better than the HDE and OSA for most instances 
expect Rec01, Rec21, Rec27, Rec33, and Rec 39. It can 
be concluded that the performance of HBBO is better 
than HDE and OSA. 
 
 

Comparisons of HBBO, PSOMA, PSOVNS 
 
The performance of HBBO is also compared with other 
two state-of-art algorithms, that is PSOMA proposed by 
Bo Liu (Liu and Wang, 2007), and PSOVNS proposed by 
Tasgetiren (Tasgetiren et al., 2004). We accept the 
results of those papers and do not ourselves program 
these algorithms. The experimental result is listed in 
Table 6. As can be seen in Table 6, the BRE and ARE 
values obtained by HBBO are much better than PSOMA 
and PSOVNS. All  WRE  values  obtained  by  HBBO  are 

better than PSOMA and PSOVNS. It can be concluded 
that HBBO is more effective than PSOMA and PSOVNS 
in an acceptable time.  

Figure 5 shows the means plot with LSD intervals for 
the above six algorithms, that is, HDE, OSA, PSOVNS, 
PSOVNS, BBO and HBBO. Form the results we can see 
that the HBBO produces statistically better results than all 
others. Therefore, the HBBO is a robust algorithm for 
solving PFSSP. 
 
 

Comparisons of SGA, SGA+NEH, HGA (Wang and 
Zheng, 2003) 
 
In order to further show the effectiveness of HBBO, we 
carry out some comparisons with SGA, HGA and 
SGA+NEH in previous papers. We accept the results of 
those   papers   and  do  not   ourselves   program   these  
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Table 6. Comparisons of PSOMA, PSOVNS and HBBO. 
 

Problem 
PSOVNS PSOMA HBBO 

BRE ARE WRE BRE ARE WRE BRE ARE WRE 

Car1 0 0 0 0 0 0 0 0 0 

Car2 0 0 0 0 0 0 0 0 0 

Car3 0 0.420 1.189 0 0 0 0 0 0 

Car4 0 0 0 0 0 0 0 0 0 

Car5 0 0.039 0.389 0 0.018 0.375 0 0 0 

Car6 0 0.076 0.764 0 0.114 0.764 0 0 0 

Car7 0 0 0 0 0 0 0 0 0 

Car8 0 0 0 0 0 0 0 0 0 

Rec01 0.160 0.168 0.321 0 0.144 0.160 0 0.016 0.1604 

Rec03 0 0.158 0.180 0 0.189 0.721 0 0 0 

Rec05 0.242 0.249 0.420 0.242 0.249 0.402 0.2415 0.2415 0.2415 

Rec07 0.702 1.095 1.405 0 0.986 1.149 0 0 0 

Rec09 0 0.651 1.366 0 0.621 1.691 0 0 0 

Rec11 0.071 1.153 2.656 0 0.129 0.978 0 0 0 

Rec13 1.036 1.79 2.643 0.259 0.893 1.502 0 0.2383 0.9845 

Rec15 0.769 1.487 2.256 0.051 0.628 1.076 0 0.1744 0.6667 

Rec17 0.999 2.453 3.365 0 1.330 2.155 0 0.2261 1.1567 

Rec19 1.529 2.099 2.532 0.43 1.313 2.102 0.2867 0.4013 0.8600 

Rec21 1.487 1.671 2.033 1.437 1.596 1.636 0.1487 1.2692 1.4378 

Rec23 1.343 2.106 2.884 0.596 1.310 2.038 0.3987 0.4525 0.4973 

Rec25 2.388 3.166 3.780 0.835 2.085 3.233 0 0.5412 1.1540 

Rec27 1.728 2.463 3.203 1.348 1.605 2.402 0.2107 0.4256 0.9692 

Rec29 1.968 3.109 4.067 1.442 1.888 2.492 0 0.7346 1.9182 

Rec31 2.594 3.232 4.237 1.510 2.254 2.692 0.2627 0.4499 1.1494 

Rec33 0.835 1.007 1.477 0 0.645 0.834 0 0.4110 0.8349 

Rec35 0 0.038 0.092 0 0 0 0 0 0 

Rec37 4.383 4.949 5.736 2.101 3.537 4.039 1.3533 1.7592 2.2622 

Rec39 2.850 3.371 3.951 1.553 2.426 2.830 0.8649 1.2168 1.9265 

Rec41 4.173 4.867 5.585 2.641 3.684 4.052 1.5121 1.9516 2.7823 

Average 1.0089 1.4420 1.9493 0.4981 0.9532 1.3560 0.1820 0.3624 0.6207 
  
 
 

algorithms. SGA is the standard genetic algorithm. HGA 
is a hybrid genetic algorithm that uses multi-
crossoveroperators to effect on a subpopulation and uses 
the SA to enhance it. SGA+NEH is a hybrid genetic 
algorithm using NEH to improve algorithm performance. 
The experi-mental results are listed in Table 6. As can be 
seen in Table 7, the BRE and ARE values of HBBO are 
better than those obtained by SGA, SGA+NEH and SGA 
for all problem expect Rec05. For the HGA, this algorithm 
only performs better than the HBBO for instance rec05. 
For the rest problems, HBBO can provide better solutions. 
Therefore, it can be concluded that HBBO is more 
effective than these algorithm in an acceptable time.  

Figure 6 shows the means plot with LSD intervals for 
the above five algorithms, that is, SGA, SGA+NEH, HGA, 
BBO and HBBO. From the results, we can see that the 
HBBO produces statistically better results than all others. 

Therefore, the HBBO is a robust algorithm for solving 
PFSSP. 
 
 
Comparisons of HQEA, QDEA and HBBO 
 
The performance of HBBO is also compared with other 
quantum-inspired algorithms. The hybrid quantum-
inspired evolution algorithm (HQEA) proposed by Wang 
et al. (2005); the quantum differential evolution algorithm 
(QDEA) was proposed by Zheng and Yamashiro, (2010). 
We accept the results of those papers and do not 
ourselves program these algorithms. The experimental 
results are listed in Table 8. From Table 8, we can find 
the Car problem, the HQEA, QDEA, HBBO all can find 
the optimal solution. For the Rec problem, HBBO also 
can provide better solutions than the other solution  
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Table 7. Comparisons of SGA, SGA+NEH, HGA and HBBO. 
 

Problem 
SGA SGA+NEH HGA HBBO 

BRE ARE BRE ARE BRE ARE BRE ARE 

Car1 0 0.27 0 0 0 0 0 0 

Car2 0 4.07 2.93 2.93 0 0 0 0 

Car3 1.09 2.95 0.82 1.21 0 0 0 0 

Car4 0 2.36 0 0.07 0 0 0 0 

Car5 0 1.46 0 1.14 0 0 0 0 

Car6 0 1.86 0 2.82 0 0.04 0 0 

Car7 0 1.57 0 1.36 0 0 0 0 

Car8 0 2.59 0 0.03 0 0 0 0 

Rec01 2.81 6.96 2.25 6.13 0 0.14 0 0.016 

Rec03 1.89 4.45 1.26 4.27 0 0.09 0 0 

Rec05 1.93 3.82 2.33 2.90 0 0.29 0.2415 0.2415 

Rec07 1.15 5.31 3.38 5.27 0 0.69 0 0 

Rec09 3.12 4.73 0.39 2.13 0 0.64 0 0 

Rec11 3.91 7.39 1.19 3.66 0 1.10 0 0 

Rec13 3.68 5.97 1.92 4.41 0.36 1.68 0 0.2383 

Rec15 2.21 4.29 2.87 4.02 0.56 1.12 0 0.1744 

Rec17 3.15 6.08 2.16 4.02 0.95 2.32 0 0.2261 

Rec19 4.01 6.07 2.05 4.35 0.62 1.32 0.2867 0.4013 

Rec21 3.42 6.07 3.52 3.58 1.44 1.57 0.1487 1.2692 

Rec23 3.83 7.46 3.63 5.12 0.40 0.87 0.3987 0.4525 

Rec25 4.42 7.20 3.14 4.89 1.27 2.54 0 0.5412 

Rec27 4.93 6.85 3.16 5.12 1.10 1.83 0.2107 0.4256 

Rec29 6.21 8.48 3.32 4.93 1.40 2.70 0 0.7346 

Rec31 6.17 8.02 5.94 6.66 0.43 1.34 0.2627 0.4499 

Rec33 3.08 5.12 2.70 3.38 0 0.78 0 0.4110 

Rec35 1.46 3.30 1.89 2.58 0 0 0 0 

Rec37 7.89 10.07 7.14 7.94 3.75 4.90 1.3533 1.7592 

Rec39 7.32 8.51 6.25 7.09 2.20 2.79 0.8649 1.2168 

Rec41 8.51 10.03 7.49 8.47 3.64 4.92 1.5121 1.9516 

Average 2.9721 5.2866 2.4734 3.8097 0.6248 1.1610 0.1820 0.3624 
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Figure 5.  The means plot with LSD intervals for six algorithms (HDE, 
OSA, PSOVNS, PSOMA, BBO, HBBO). 



  

 
 
 
 
Table 8. Comparisons of HQEA, QDEA and HBBO. 
 

Problem 
HQEA QDEA HBBO 

BRE ARE BRE ARE BRE ARE 

Car1 0 0 0 0 0 0 

Car2 0 0 0 0 0 0 

Car3 0 0 0 0 0 0 

Car4 0 0 0 0 0 0 

Car5 0 0 0 0 0 0 

Car6 0 0 0 0 0 0 

Car7 0 0 0 0 0 0 

Car8 0 0 0 0 0 0 

Rec01 0 0.140 0 0 0 0.016 

Rec03 0 0.170 0 0 0 0 

Rec05 0.240 0.340 0.242 0.242 0.2415 0.2415 

Rec07 0 1.020 0 0 0 0 

Rec09 0 0.640 0 0 0 0 

Rec11 0 0.670 0 0 0 0 

Rec13 0.160 1.070 0.104 0.225 0 0.2383 

Rec15 0.050 0.970 0 0.158 0 0.1744 

Rec17 0.630 1.680 0 0.126 0 0.2261 

Rec19 0.290 1.430 0.287 0.435 0.2867 0.4013 

Rec21 1.440 1.630 0.149 1.041 0.1487 1.2692 

Rec23 0.500 1.200 0.348 0.597 0.3987 0.4525 

Rec25 0.770 1.870 0.119 0.454 0 0.5412 

Rec27 0.970 1.830 0.253 0.954 0.2107 0.4256 

Rec29 0.350 1.970 0 0.824 0 0.7346 

Rec31 1.050 2.500 0.263 0.565 0.2627 0.4499 

Rec33 0.830 0.910 0 0.297 0 0.4110 

Rec35 0 0.150 0 0 0 0 

Rec37 2.520 4.330 1.717 2.771 1.3533 1.7592 

Rec39 1.630 2.710 0.845 1.485 0.8649 1.2168 

Rec41 3.130 4.150 1.190 1.965 1.5121 1.9516 

Average 0.502 1.082 0.1902 0.428 0.1820 0.3624 
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Figure 6. The means plot with LSD intervals for six algorithms 
(SGA, SGA+NEH, HGA, BBO, HBBO).  

Yin and Li          2093 
 
 
 
expect Rec23 and Rec41. For these two problems, our 
algorithm cannot obtain the better solution than the 
QDEA. But the ARE of HBBO is better or equal to the 
QDEA. Therefore, the HBBO algorithm is an effective and 
robust approach for the PFSP. Figure 7 shows the means 
plot with LSD intervals for the above algorithms, that is, 
HQEA, QDEA and HBBO. From the results, we can see 
that the HBBO produces statistically better results than 
the other algorithm. Therefore, the HBBO is an effective 
algorithm for solving PFSSP. 
 
 

Comparisons on minimizing maximum lateness of 
PFSP with QDEA 
 

For the maximum lateness criterion in PFSP, There are 
two algorithms: PSOVNS (Tasgetiren et al., 2004) and 
QDEA (Zheng and Yamashiro, 2010). However, the 
PSOVNS do not report their best solutions in their paper. 
Therefore, in order to show the effectiveness of HBBO, we 
carry out a simulation to compare our HBBO algorithms 
for the minimizing maximum lateness with QDEA. The 
160 DMU benchmark problems (Demirkol et al., 1998) 
(available from 
http://cobweb.ecn.purdue.edu/~uzsoy2/benchmark/flmax.t
xt) are used to demonstrate the algorithm. The 
experimental solutions are listed in Table 9. We found that 
PSOVNS can obtain 157 out of 160 upper bounds where 
156 of them were improved. However, our HBBO 
algorithm and QDEA can also obtain 157 out of 160 upper 
bounds where 156 of them were improved. But our 
algorithm can find 137 new upper bounds for the DWU 
problems. For the ARE, the HBBO are all better than the 
QDEA. The HBBO algorithm provided 137 new upper 
bounds for future research to provide new algorithms and 
to compare their results with our solutions. 
 
 

Effects of the parameter P 
 
Here, we will discuss the effects of the parameter of P. 
The value of P is very important for the BBO algorithm 
(Simon, 2008). Each individual has an associated 
probability, which indicates the likelihood that it was 
expected a priori to exist as a solution to the given 
problem. If a given problem S has a low probability Ps, 
then it is surprising that it exists as a solution. It is likely 
tomutate other solutions. In contrast, a solution with a 
high probability is likely to mutate to a different solution. 
Based on it, we also use Car problem and Rec problem 
as examples to analyze the value of P. 

}1.0,08.0,06.0,04.0,02.0,01.0,005.0{∈P . The experimental 

results are listed in Table 10. As can be seen in Table 4, 
the solution qualities of HBBO vary with P, whose value 
changes from 0.005 to 0.1.  

Figure 8 shows the means plot with LSD intervals for 
the variant P. From Figure 8, we can clearly see  that  the  
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Figure 7. The means plot with LSD intervals for six algorithms.(HQEA, QDEA, HBBO). 

  
 
 
Table 9. The maximum lateness obtained by HBBO. 

 

P UB QDEA HBBO P UB QDEA HBBO P UB QDEA HBBO 

20,15 20,20 30,15 

1 2833 2468 2431 21 3437 3024 2962 41 2837 2291 2228 

2 2322 2087 2059 22 3127 2752 2748 42 3088 2629 2568 

3 2370 2112 2081 23 2906 2745 2741 43 2733 2346 2270 

4 2554 2275 2255 24 3197 2995 2979 44 3054 2689 2563 

5 2699 2330 2321 25 3069 2748 2715 45 3074 2636 2595 

6 2239 2307 2307 26 2594 2579 2579 46 2158 2026 2007 

7 1722 1712 1712 27 3388 3294 3294 47 1875 1748 1740 

8 2526 2508 2508 28 2978 2947 2947 48 2637 2591 2575 

9 2165 2132 2132 29 2271 2210 2210 49 2366 2333 2288 

10 2292 2345 2340 30 2836 2740 2740 50 2381 2368 2360 

11 3360 3042 3012 31 3878 3652 3631 51 4465 3750 3689 

12 3651 3212 3182 32 3914 3564 3552 52 4197 3583 3501 

13 3318 2908 2890 33 4076 3683 3638 53 3810 3236 3189 

14 3347 3092 3049 34 4276 3931 3901 54 4472 3865 3814 

15 3251 3049 3017 35 3853 3580 3545 55 4270 3631 3562 

16 3009 2589 2563 36 3231 3115 3086 56 3221 2792 2669 

17 2892 2627 2600 37 3279 3095 3053 57 2983 2679 2629 

18 2462 2330 2302 38 3514 3364 3354 58 3279 2876 2815 

19 2635 2531 2518 39 2998 2975 2975 59 3433 3053 2983 

20 2533 2457 2436 40 3370 3188 3188 60 3252 2976 2911 

APRD - -6.953 -7.6500 APRD - -5.710 -6.2833 APRD - -11.032 -12.7970 

30,20 40,15 40,20 
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Table 9. Cont’d. 
 

61 3737 3207 3091 81 3530 2619 2452 101 4336 3495 3388 

62 3592 3065 3002 82 3355 2662 2543 102 4278 3713 3564 

63 4115 3496 3368 83 3312 2728 2588 103 4216 3610 3481 

64 3731 3414 3333 84 3060 2552 2461 104 4139 3682 3516 

65 3254 2894 2821 85 3159 2691 2618 105 4078 3612 3474 

66 3296 3191 3191 86 2584 2370 2337 106 3379 3132 3132 

67 3057 2934 2934 87 2343 2112 2064 107 3236 3212 3085 

68 3158 3137 3137 88 2364 2364 2364 108 2891 2801 2779 

69 3134 3166 3166 89 2364 2375 2375 109 3627 3339 3303 

70 1994 1941 1893 90 2503 2419 2419 110 2610 2505 2505 

71 4472 4007 3982 91 5152 4426 4317 111 5438 4842 4678 

72 4603 4199 4087 92 4859 3932 3850 112 5640 4943 4818 

73 4884 4430 4332 93 4969 4441 4273 113 5873 5066 4999 

74 4628 4332 4216 94 4854 4123 4089 114 5560 4977 4885 

75 4678 4117 4078 95 5133 4391 4297 115 5536 4954 4813 

76 3997 3708 3657 96 3596 3198 3128 116 4177 3643 3536 

77 3721 3461 3366 97 3470 3245 3016 117 4066 3707 3608 

78 3591 3370 3316 98 3464 3145 2970 118 4590 4030 3880 

79 4178 3877 3843 99 3479 3209 3088 119 3953 3757 3498 

80 4111 3936 3854 100 3021 3021 2865 120 4320 3946 3795 

APRD - -7.583 -9.1465 APRD - -11.640 -13.8724 APRD - -9.908 -12.4515 

 
 
 

Table 9. Continue.  

 

50,15 50,20 

P UB QDEA HBBO P UB QDEA HBBO 

121 4016 2976 2803 41 4495 3659 3524 

122 3821 2935 2782 42 4713 3755 3614 

123 3745 2774 2624 43 4262 3544 3475 

124 3631 2774 2655 44 4922 3983 3834 

125 3769 2942 2852 45 4380 3608 3435 

126 2771 2602 2615 46 3654 3629 3536 

127 2979 2972 2972 47 2816 2779 2734 

128 3276 3064 3064 48 3593 3502 3487 

129 2615 2606 2581 49 3812 3632 3611 

130 3211 3190 3190 50 3596 3572 3506 

131 5364 4554 4384 51 6224 5462 5349 

132 5944 4765 4649 52 6582 5749 5591 

133 5294 4540 4444 53 6462 5752 5593 

134 5538 4659 4469 54 6074 5576 5368 

135 5226 4516 4431 55 6166 5285 5179 

136 3817 3433 3291 56 4472 4098 3941 

137 3866 3473 3285 57 4438 4123 3986 

138 3843 3483 3340 58 4461 4193 4002 

139 4007 3233 3116 59 4259 3958 3839 

40 3997 3806 3633 60 4521 4110 4009 

APRD - -13.186 
-

15.8349 
APRD - -9.910 -12.3830 
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Table 10. The ARE of variant for each algorithm. 
 

Problem 
P=0.005 P=0.01 P=0.02 P=0.04 P=0.06 P=0.08 P=0.1 

BRE ARE BRE ARE BRE ARE BRE ARE BRE ARE BRE ARE BRE ARE 

Car1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Car8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec01 0 0.0926 0 0.016 0 0.0962 0 0.0642 0 0.0642 0 0.0321 0 0.0642 

Rec03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec05 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 0.2415 

Rec07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec13 0 0.2902 0 0.2383 0.1036 0.3005 0.1036 0.2073 0 0.1710 0 0.2850 0.1036 0.3902 

Rec15 0 0.4256 0 0.1744 0 0.0308 0 0.0462 0 0.2154 0 0.1641 0 0.1385 

Rec17 0 0.2366 0 0.2261 0 0.2944 0 0.3891 0 0.3891 0 0.2050 0 0.5100 

Rec19 0.2867 0.4682 0.2867 0.4013 0.2867 0.5208 0.2867 0.5399 0.2867 0.5495 0.2867 0.4634 0.2867 0.6737 

Rec21 0.1487 1.2147 0.1487 1.2692 1.4378 1.4576 0.5454 1.3485 0.1487 1.1304 1.1899 1.4328 0.8428 1.4378 

Rec23 0.4475 0.4923 0.3987 0.4525 0.1492 0.4426 0.4475 0.4873 0.4475 0.5669 0.2486 0.4326 0.3481 0.5619 

Rec25 0.4437 0.9471 0 0.5412 0.3581 1.0306 0.4775 0.8715 0.2388 0.9272 0.2388 0.7839 0.2786 0.9073 

Rec27 0.6743 0.8512 0.2107 0.4256 0.8007 0.9987 0.2528 0.7290 0.2528 0.9819 0.2528 0.8133 0.2528 0.7965 

Rec29 0.5684 0.9969 0 0.7346 0 0.7433 0.4373 0.8920 0.3498 0.9095 0.3061 0.7871 0 0.7346 

Rec31 0.2956 0.4893 0.2627 0.4499 0.3941 0.5681 0.2956 0.4729 0.3284 0.5583 0.2627 0.4335 0.2627 0.4532 

Rec33 0.1285 0.6294 0 0.4110 0 0.3597 0 0.5267 0 0.5010 0 0.4624 0 0.5267 

Rec35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rec37 1.9996 2.4157 1.3533 1.7592 1.9390 2.1733 1.9996 2.4157 2.0400 2.3308 1.8178 2.5207 2.0602 2.3106 

Rec39 1.4547 1.6906 0.8649 1.2168 1.1205 1.4429 1.4547 1.6906 0.9632 1.3839 1.4940 1.7299 1.0812 1.2227 

Rec41 2.0565 2.2742 1.5121 1.9516 1.4516 2.2661 1.4718 2.1573 2.1976 2.3710 1.9758 2.2621 2.2177 2.9960 

Average 0.3016 0.4743 0.1820 0.3624 0.2856 0.4471 0.2763 0.4510 0.2584 0.4583 0.2867 0.4500 0.2750 0.4816 
 
 

value of P plays an important role on HBBO, and 
that when P equals 0.01, the algorithms can pro-
duce statistically better results. Thus, we choose  
P=0.01 in our algorithm HBBO. 

Comparisons of HBBO, BEST (LR), M-MAMAC, 
PACO and PSOVNS 

 
In order to evaluate the performance of the HBBO  

algorithm with total flowtime criterion, this 
algorithm is compared with the performance of 
these methods proposed by Liu and Reeves, 
Rajendran, and Tasgetiren. Liu and Reeves (2001)  
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Figure 8. The means plot with LSD intervals for the variant P. 

  
 
 

developed a couple of new heuristics. This heuristic is 
one of the best heuristic. Rajendran and Ziegler (2004) 
developed two new algorithms called M-MMAS and 
PACO.PSOVNS (Tasgetiren et al., 2007) presented by the 
Tasgetiren. The comparative experiments will be carried 
out on the benchmark problems of Taillard (1993)].  

We list the results in Table 11. From Table 11, for the 
90 instances considered in this experiment, the HBBO 
algorithm improves 49 current best solutions.  However, 
the main reason for the success was due to the extensive 
use of the fast local search and pairwise-based local 
search in the BBO algorithm where we found that in the 
first 30 instance, we have 12 instances which have the 
same solution with other algorithms. For the next 60 
instances, PSOVNS have 10 instances better than the 
HBBO algorithm. For the other 50 instances in middle and 
large scale, the comparison results are all better than the 
other algorithms which show the global search ability of 
our method. As the experimental solution shown in 
Table12, HBBO can provide the better search ability for 
the large scale problem with the total flow time of jobs. 

The   experimental   results   are  reported  in   Table  12.  

Further analysis was carried out to see how these 
algorithms react to the problems. BEST (LR), M-MMAS, 
PACO, PSOVNS, HBBO are denoted as P1, P2, P3, P4.  The 
APRD is calculated as: 
 

R
kP

kPH

APRD

R

i k

ki
∑

= =

×=−

= 1

)
)4,3,2,1,min(

100)4,3,2,1,min(
(

 

 
The experimental results are listed in Table 12. From the 
table, it is obvious that the HBBO can provide better 
solution than the BEST (LR), M-MMAS, PACO, PSOVNS, 
HBBO, Therefore, the HBBO algorithm provided the new 
upper bounds which can be used for future research to 
provide new algorithms; and their results will becompared 
with our solutions. 
 
 

Conclusion  
 
In this paper, a promising hybrid biogeography based 
optimization is proposed to solve PFSSP.  BBO  is  made 
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Table 11. The best solution by HBBO and other four algorithms. 
 

n*m 
Total flowtime of jobs 

n*m 
Total flowtime of jobs 

BEST(LR) M-MMAS PACO PSOVNS HBBO BEST(LR) M-MMAS PACO PSOVNS HBBO 

20*5 

14222 14056 14056 14033 14033 

50*10 

88770   89599 88942 88031 87654 

15446 15151 15214 15151 15151 85600   83612 84549 83624 83555 

13676 13416 13403 13301 13301 82456  81655 81338 80609 80322 

15750 15486 15505 15447 15447 89356    87924 88014 87053 86921 

13633 13529 13529 13529 13529 88482  88826 87801 87263 86984 

13265 13139   13123 13123 13123 89602  88394 88269 87255 86816 

13774   13559 13674 13548 13548 91422  90686 89984 89259 89517 

13968  13968 14042 13948 13948 89549    88595 88281 87192 87607 

14456   14317 14383 14295 14295 88230   86975 86995 86102 86015 

13036   12968 13021 12943 12943 90787  89470 89238 88631 88783 

 

20*10 

21207  20980 20958 20911 20911 

50*20 

129095    127348 126962 128622 126719 

22927   22440 22591 22440 22440 122094   121208 121098 122173 119600 

20072  19833 19968 19833 19833 121379    118051 117524 118719 117241 

18857   18724 18769 18710 18710 124083  123061 122807 123028 121319 

18939   18644 18749 18641 18641 122158   119920 119221 121202 119099 

19608   19245 19245 19249 19245 124061   122369 122262 123217 121343 

18723  18376 18377 18363 18363 126363   125609 125351 125586 123807 

20504  20241 20377 20241 20241 126317  124543 124374 125714 123054 

20561  20330 20330 20330 20330 125318  124059 123646 124932 122765 

21506   21320 21323 21320 21320 127823  126582 125767 126311 124970 

 

20*20 

34119   33623 33623 34975 33623 

100*5 

256789  257025 257886 254762 254931 

31918  31604 31597 32659 31587 245609   246612 246326 245315 244066 

34552  33920 34130 34594 33920 241013  240537 241271 239777 239152 

32159   31698 31753 32716 31661 231365  230480 230376 228872 228655 

34990  34593 34642 35455 34557 244016   243013 243457 242245 241678 

32734  32637 32594 33530 32564 235793  236225 236409 234082 233800 

33449    33038 32922 33733 32922 243741  243935 243854 242122 241440 

32611  32444 32533 33008 32412 235171    234813 234579 232755 232375 

34084  33625 33623 34446 33600 251291  252384 253325 249959 249056 

32537  32317 32317 33281 32262 247491   246261 246750 244275 244503 

 

50*5 

65663   65768 65546 65058 64848 

100*10 

306375   305004 305376 303142 301927 

68664   68828 68485 68298 68159 280928   279094 278921 277109 277952 

64378  64166 64149 63577 63331 296927   297177 294239 292465 291839 

69795  69113 69359 68571 68458 309607   306994 306739 304676 304591 

70841  70331 70154 69698 69691 291731    290493 289676 288242 288676 

68084   67563 67664 67138 67081 276751  276449 275932 272790 273031 

67186  67014 66600 66338 66470 288199   286545 284846 282440 282252 

65582   64863 65123 64638 64620 296130   297454 297400 293572 293951 

63968  63735 63483 63227 63170 312175  309664 307043 305605 305348 

70273   70256 69831 69195 69213 298901   296869 297182 295173 295098 
  
 
 

suitable for permutation flow shop scheduling by using 
the LRV rule. This is proposed to convert the continuous 
encoding   in   BBO   to  a  discrete  job  permutation.  For 

initialing the population, The NEH heuristic was combined 
with the random initialization to initialize the population 
with  certain  quality  and  diversity.  In  BBO-local  search,
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Table 11. Contnd. 
 

n*m 
Total flowtime of jobs 

BEST(LR) M-MMAS PACO PSOVNS HBBO 

100*20 

383865 373756 372630 374351 371828 

383976 383614 381124 379792 377692 

383779 380112 379135 378174 376161 

384854 380201 380765 380899 378623 

383802 377268 379064 376187 375685 

387962 381510 380464 379248 378616 

384839 381963 382015 380912 378543 

397264 393617 393075 392315 389896 

387831 385478 380359 382212 380256 

394861 387948 388060 386013 384096 
 
 
 

Table 12. Relative performance of five heuristic for mean percent relative increase in total 

flowtime with respect to the best heuristic solution. 
 

 BES(LR) M-MAAS PACO PSOVNS HBBO 

20*5 1.36 0.20 0.45 0.00 0.00 

20*10 1.43 0.05 0.32 0.002 0.00 

20*20 1.22 0.12 0.19 2.83 0.00 

50*5 1.43 1.01 0.83 0.13 0.02 

50*10 2.42 1.43 1.17 0.19 0.09 

50*20 2.37 1.05 0.74 1.60 0.00 

100*5  0.96 0.91 1.03 0.20 0.02 

100*10 1.54 1.13 0.85 0.08 0.06 

100*20 2.15 0.90 0.67 0.49 0.00 

Average 1.6533 0.7556 0.6944 0.6136 0.0211 

  
 
 
BBO’s migration and mutation can perform a wide global 
search in the whole solution space. This means that 
BBO-local search has the ability of obtaining enough sub-
regions over the whole solution space. Then, the fast 
local search is proposed to enhance the individual of the 
BBO with a certain probability. Finally, the pairwise based 
local search is used to enhance the global optimal 
solution and help the algorithm to escape from local 
minimum. Experimental results and comparisons show 
the effectiveness of the proposed HBBO for PFSSP. 
Moreover, the further work is to study the theoretical 
aspects as well as the performance of the technique. The 
other problem is to extend the algorithm to solve other 
combination problem such as job shop scheduling. 
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