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The aim of this study is to detect acute hypotensive episodes (AHE) and mean arterial pressure 
dropping regimes (MAPDRs) using ECG signal and arterial blood pressure (ABP) waveforms. To meet 
this end, the QRS complexes and end-systolic end-diastolic pulses are first extracted using two 
innovative modified Hilbert transform-based algorithms namely as ECGMHT and BPMHT. The resulted 
systolic blood pressure (SBP) and diastolic blood pressure (DBP) pulses are then used to calculate the 
mean arterial pressure (MAP) trend. A new smoothing algorithm is then developed based on piecewise 
polynomial fitting (PPF) to smooth the fast fluctuations observed in RR-tachogram and MAP trend. The 
PPF algorithm operates by sequentially fitting N number of polynomials to the original signal and 
calculating the corresponding coefficients using the best linear unbiased estimation (BLUE) approach. 
Afterwards, in order to consider the mutual influence of parameters on the evaluation of shock 
probability, a Sugeno adaptive network-based fuzzy inference system-ANFIS is trained using Hasdai et 
al. parameters as input, with appropriate membership functions for each parameter. Using this network, 
it will be possible to incorporate the possible mutual influences between risk parameters such as heart 
rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), age, gender, weight and some 
miscellaneous factors to the calculation of shock occurrence probability. In the next step, the proposed 
algorithm is applied to 15 subjects of the MIMIC II Database and AHE and MAPDRs (MAP � 60 mmHg 
with a period of 30 min or more) are identified. As a result of this study, MAPDR is realized as a specific 
marker of cardiogenic shock. In that, for a sequence of MAPDRs; as long as 20 min or more, there will 
exist a consequent high peak with the duration of 3 to 4 min in the corresponding probability of 
cardiogenic shock diagram. The presented algorithm did not yield any inappropriate or wrong results 
on MIMICII database (that is False Negative = False Positive = 0). 
 
Key words: Acute hypotensive episode, cardiogenic shock, blood pressure pulse detection, piecewise 
polynomial fitting, ANFIS approximation. 

 
 
INTRODUCTION 
 
AHE is one of the most critical events that occur in 
intensive care units (ICUs) which requires effective and 
prompt interventions. It is generally defined as any period 
of 30 min or more during which at least 90% of the MAP 
measurements are at or below 60 mmHg (Guyton, 1996). 
AHE can lead to intense organ damage and death if not 
treated appropriately. Diagnosing the causes of this 
episode including  sepsis,  myocardial  infarction,  cardiac  
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arrhythmia, pulmonary embolism, hemorrhage, dehydra-
tion, hypovolemia, insufficient cardiac output, or 
vasodilatory shock and conducting timely and proper 
interventions can remarkably reduce the risk of this fatal 
episode (Harrison, 2007; Irwin and Rippe, 2003; Paul, 
1978). 

In this context, Cowley et al. (1973) investigated the 
role of the baroreceptor reflex in daily control of arterial 
blood pressure (ABP) and concluded that the hypotension in 
denervated dogs was proportional to the preexisting 
arterial blood pressure level. Hasdai et al. (1999) 
analyzed baseline variables associated with the develop-
ment of shock after thrombolytic  therapy  and  devised  a  
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Figure 1. General overview of the proposed shock probability evaluation algorithm via and ANFIS trained model. 

 
 
 
scoring system predicting the risk of shock. An innovative 
study was then conducted by Picard et al. (2002:2003) to 
identify the echocardiographic features of cardiogenic 
shock and assess the advantages of findings on early 
echocardiograms that are associated with mortality after 
cardiogenic shock. Afterwards, Morris et al. (2002:2005) 
proposed a potential algorithm for hypotension based on 
reports of hypotension during anesthesia from the first 
4000 incidents reported to the Australian incident 
monitoring study (AIMS). An ECG-based method was 
next developed by Solem et al. (2004) for the detection of 
acute hypotension which was able to provide information 
of the patient’s propensity to hypotension at an early 
stage of hemodialysis. In another study conducted by 
Halkin et al. (2005), seven risk factors were identified as 
accurate predictors of mortality for cardiogenic shock. 
According to their research, measurement of baseline left 
ventricular function was the single most powerful 
predictor of survival which should be incorporated into 
risk score models. Recently, multivariable logistic 
regression modeling techniques was used by Zhang et al. 
(2007) to develop a model for predicting the occurrence 
of cardiogenic shock. On the basis of the coefficients in 
their model, they developed a risk score for the 
probability of cardiogenic shock. 

The presented study concentrates on the detection of 
AHE and MAPDRs on the basis of ECG signal and ABP 
waveform measurements. To meet this end, the QRS 
complexes and end-systolic end-diastolic pulses are first 
identified using two versions of the MHT algorithm 
namely as ECGMHT and BPMHT, respectively. Then, 

using the obtained SBP and DBP waveforms, MAP trend 
is specified. Afterwards, in order to smooth the fast 
fluctuations observed in RR-tachogram and MAP trend, 
an innovative smoothing algorithm based on piecewise 
polynomial fitting (PPF) was designed (Figure 1). Fitting 
N numbers of polynomials sequentially to the original 
signal and determination of the corresponding 
coefficients based on BLUE approach (Ghaffari and 
Homaeinejad, 2008) is the basis of the PPF algorithm 
operation. In order to consider the mutual influence of 
parameters on the evaluation of shock probability, a 
Sugeno adaptive network-based fuzzy inference system-
ANFIS is trained using Hasdai et al parameters as input, 
with appropriate membership functions for each 
parameter. Using this network, it will be possible to 
incorporate the possible mutual influences between risk 
parameters such as heart rate (HR), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), age, 
gender, weight and some miscellaneous factors to the 
calculation of shock occurrence probability. The block 
diagram of present study is illustrated in Figure 1. Finally, 
the proposed algorithm is applied to 15 subjects of the 
MIMIC II Database http://www. physionet.org/physiobank-
/database/mitdb/ and http: // www. physionet.org/physio-
bank/database/slpdb/.) and AHE and MAPDRs are 
consequently detected (MAP � 60 mmHg with endurance 
more than 30 min). As a result of this study, MAPDR is 
realized as a marker of cardiogenic shock. In that, for a 
sequence of MAPDRs as long as 20 min or more 
appeared in the MAP trend, there would exist an ensuing 
high peak with the duration of 3 to 4 min in the probability  



 
 
 
 
of shock diagram which is derived using the risk scoring 
model developed by Hasdai et al. (2000). 
 
 
DESCRIPTION OF THE MHT ALGORITHM 
 
From a general point of view, this algorithm consists of 10 
stages. In stage (a), using an appropriate bandpass FIR 
filter, the original ECG signal is filtered and therefore the 
effects of low frequency noises (motion artifacts) and high 
frequency noises (device noise) are eliminated. In the 
stage (b), conventional Hilbert transform is taken from the 
filtered signal. In the stage (c), according to the Equation 
(5), signal y1(t) is entered to a nonlinear function and then 
the output of this nonlinear function maps the filtered 
signal y0(t). In the stage (d), first, only positive values of 
the signal y2(t)remain unchanged while the negative 
values of the signal y2(t) are mapped to zero. Then the 
resulted signal is normalized by dividing it to its maximum 
value. In the stage (e), the signal y3(t) passes through 
another nonlinear amplifying function. The (f) routine 
depicts an adaptive thresholding procedure in which 
using the mean and the standard deviation of the signal 
y4(t), an appropriate value is generated during each 
interval of the signal y4(t) for the purpose of comparison. 
The value of the aforementioned threshold is obtained 

according to the equation jjj σαµτ +=  value. After 
subtraction of resulted threshold from the signal y4(t), only 
positive values are held while negative values are 
replaced by zero and afterwards, the y4(t) is multiplied by 
this nonlinear gain. In the stage (g), using a window 
which slides sample to sample the maximum value and 
the corresponding index for each segment is found and 
other values in the segment are pushed down to zero. 
Therefore, by sliding this window along the signal, the 
best local maximum among the other local maxima is 
obtained. In the stage (h), the resulted signal from stage 
(g) is divided into identical segments and then a simple 
local search is performed to find resulted impulses 
(Figures 2a-f). In this stage, obtained QRS indices are 
transferred to the original ECG signal and another local 
search is performed to find the precise position of the R-
peak on the unfiltered ECG. After this stage, RR- 
intervals (RR-tachogram) are obtained and then using 
two thresholds with low and high values respectively, the 
complexes making RR-interval abnormal relative to the 
preceding RR-interval are removed. If threshold is 
chosen low, the detected QRS complexes set is a 
compound of normal QRS complexes and PVCs. On the 
other hand, if the threshold value is chosen high, the 
detection set almost entirely consists of normal 
complexes. Lastly, RR-intervals much smaller than the 
mean RR value are eliminated. 

A quadrature filter with the following transfer function is 
called Hilbert transform which is an all-pass filter that 
changes the phase of the  input  signal  -900  and  has  an 
impulse     response     of     )(1 tπ    (Benitez et al., 2001),   

Ghaffari et al.         027 
 
 
 

�
�

�
�

�

<+
=
>−

=−=
0
00
0

)()(
ω
ω
ω

ωω
j

j

signjG

        (1) 
 
Therefore, the Hilbert transform of the signal s(t) can be 
obtained from the following convolution, 
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The most significant characteristic of Hilbert transform is 
its mapping of local maxima and minima values of the 
original signal to the values crossing of the zero, (Benitez 
et al., 2001; Natalia et al., 2008). Assume that y(t) 
represents the original ECG signal and, 
 

)(*)()(0 thtyty BP=
         (3) 

 
Where: 
 

)(thBP  = the impulse response of the bandpass FIR 
filter; 

)(0 ty
 = the output of the filter. 
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Also assume that the signal y(t) represents an ECG lead 
in which R-peaks are upward. As can be seen in Figure 
2g, a sign change from positive to negative in Hilbert 
transform of a signal is an indicator of the existence of a 
local maximum; however, an opposite sign change shows 
the existence of a local minimum in the signal. Using the 
following mapping, it would be possible to push down the 
positive part of Hilbert transform to zero while the 
negative part is mapped to a constant value.  
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In which magK2  is the amplification coefficient, )(0 ty  is the  

filtered ECG signal, attλ
 is the attenuation coefficient, 

which is a positive value and always
1≥attλ

. The sign (.) 

operator is the sign function and )(1 ty  is the Hilbert  
transform of the filtered signal. According to Equation 5, it 

can   be   realized   that  for  a   negative   value   of )(1 ty ,  
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Figure 2. The block diagram of the MHT algorithm. 



 
 
 
 

)()0exp()()( 02022 tyKtyKty magmag ==
 and the 

output would be the amplified version of the filtered 

signal. However, for positive values of )(1 ty , 
[ ] 0)(exp)()( 1022 ≈−= tytyKty attmag λ

. Thus, for 
negative values of Hilbert transform, the filtered signal will 
be amplified and for positive values of Hilbert transform, 
the filtered signal will be mapped near zero. In the next 
step, using another nonlinear function, the negative 

values of the signal 
)(2 ty

 are eliminated, as follows: 
 

( )[ ] )()(1)( 2233 tytysignKty mag +=
          (6) 

 

Where: magK 3  represents the amplification coefficient. 
 
According to this equation, for a negative value 

of )(2 ty , the signal )(3 ty  will be equal to zero; 

however, for positive values of )(2 ty , the signal 
)(3 ty  will be amplified with the proportional factor 

magK 3 . Afterwards, the signal )(3 ty  is normalized 
and then re-amplified to define a proper subject-
independent thresholding on the signal, as follows: 
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Where ( ))(max 3 ty  represents the maximum value of the 

signal )(3 ty . 
 
 
Design of adaptive thresholding on the signal y4(t) 
 
Due to the variability of the morphology of QRS 
complexes in cases of arrhythmia, it will not be possible 
to detect all R-peaks using a fixed threshold value. For 
instance, if the threshold value is rather large relative to 

unity (unity is the minimum value of the signal )(4 ty ) 

therefore, the QRS complexes with a small )(4 ty  value, 
will be located beneath the threshold line and 
consequently will not be detected. On the other hand, for 
values of threshold highly close to unity, some waves will 
be detected in addition to QRS complexes which will lead 
to a decrease in the algorithm accuracy, even if an 
improperly-detected     QRS    elimination    algorithm    is  
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implemented. Accordingly, it seems that an adaptive 
thresholding is necessary and the algorithm would be 

more efficient. Suppose that the signal )(4 ty  is divided  
into N number of identical segments, with the values of 

jµ  and jσ , respectively for mean value and standard 
deviation of the signal segment in the jth interval (j = 1, 

2,…,N). For a threshold of jjj σαµτ +=
, where α  is 

the adjustment coefficient ( 60 ≤< α ), one can calculate 
the corresponding suitable comparison threshold of each 

sample of the signal )(4 ty  in each interval of )(4 ty . Thus, 

variability in the amplitude of the signal )(4 ty , even in 
case of large variation, will not cause significant errors in 
the proposed detection algorithm.  
 
 
Sample to sample windowing: Selection of the best 
local minimum 
 
In this step, a window with an appropriate length of 

samples is selected and is slid on the signal )(5 ty  from 
one sample to the next. Each time, the maximum value in 
the window and the corresponding index is calculated 
and all other points in the window are padded by zero. If 
moving forward, the new maximum entered the window is 
larger than the previous one, the previous maximum will 
be replaced by zero and the current maximum will play as 
a new QRS candidate. Finally, the output of the window 
will be called as the best candidate for R-peak of QRS 
complex.  
Accordingly, using the calculated threshold, the signal 

)(5 ty  can be obtained from signal )(4 ty  as follows: 
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Eventually, after applying a local search to the entire 
resulted signal, the proper candidates of QRS complexes 
will be obtained. 
 
 
Elimination of improperly-detected waves 
 
In order to eliminate the QRS complexes with abnormal 
time distances from each other, suppose that the index k 
represents the k-th R-wave in the signal. Consequently, 
using a hypothesis test with the following test ratio:  
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And   a  decision  rule  based  on   the  following  criterion 
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Figure 3a. Graphical representation of the performance of MHT algorithm in the 
detection of QRS complexes; filtered ECG signal. 
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The )1( +k th R-wave with abnormal distance from the 
preceding R-wave will be eliminated. It should be noted 

that in Equations (9) and (10) Rτ  is the rejection ratio and 
RL

 is the decision ratio. In order to detect PVC beats, 

the factor Rτ
 should be chosen between 0.45 and 0.55 

( 55.045.0 ≤≤ Rτ ). However, for the values of Rτ  between 

0.55 and 0.70 ( 70.055.0 ≤≤ Rτ ) more accurate results will 
be obtained for R-wave detection. Finally, to remove 
much improperly-detected R-waves, it is assumed that 
the time sequence of RR-intervals (RR-tachogram) has a 

mean value Cµ
 and standard deviation Cσ . Thus, if the 

equation CCkk RR σµ 5.3)( 1 +≤− −  is held, the kR  peak 
will be rejected. The schematic block diagram of the MHT 
algorithm is depicted in Figure 2. It is also shown in 
Figure 3 how the developed algorithm works to detect 
QRS complexes.  
 
 
Design of piecewise polynomial fitter (PPF)  
 
The design of piecewise polynomial fitter (PPF) is based 
on the least squares method. In the PPF algorithm, the 
original signal  is  first  divided  into   identical   segments. 

In the next step, a pth-order polynomial ( 15p3 ≤≤ , this 
interval is obtained empirically after numerous simula-
tions) is fitted to each signal segment in the 
corresponding windows. Next, the discontinuities in the 
beginnings and the ends of the intervals are eliminated 
using some simple calculations. The PPF algorithm has 
acceptable capability in cases of noise with non-
stationary variance, low signal to noise ratios, and 
colored noise. In this section, the design procedure of the 
PPF algorithm and the corresponding implementation 
method is first described and the related performance 
characteristics are then explained. 
 
 
The principle of least squares 
 
The principle of least squares extensively has been 
studied in systems identification (SÖderstrom and Stoica, 
1989) and estimation theories (Kay, 1979) textbooks. 

Consider the kth segment of a signal with the length NW  

such as { }NN kWWktty :)1(1)( −+= . A typical pth-order 
polynomial is supposed to be fitted to this signal segment 
as follows: 
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Where: 
 

)(ˆ tyk  = the  estimation  of  the  original  signal  in  the  kth  
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Figure 3b. Graphical representation of the performance of MHT algorithm in the detection of QRS complexes; 
conventional Hilbert transform. 
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Figure 3c. Graphical representation of the performance of MHT algorithm in the detection of QRS complexes; 
nonlinear mapping according to Equation (5). 
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Figure 3d. Graphical representation of the performance of MHT algorithm in the detection of 
QRS complexes; padding zeros instead of negative values in signal obtained from previous 
section. 
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Figure 3e. Graphical representation of the performance of MHT algorithm in the detection of QRS 
complexes; normalization and exponentially amplification of the preceding signal and application of 
the adaptive thresholding 
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Figure 3f. Graphical representation of the performance of MHT algorithm in the detection of QRS 
complexes; application of the sliding window to form the impulses originated from the best local 
maxima candidates. 
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Figure 3g. Graphical representation of the performance of MHT algorithm in the detection of QRS 
complexes; application of a local search to the original signal centered on impulse indices obtained 
from stage (f). 
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interval; 
 

ky0  = the initial value of the interval; 

kt0  = the start time of the interval, and 

nka
 represents the polynomial coefficients which should  

be estimated using BLUE algorithm. 
 
Assuming the number of samples for each signal 

segment to be NW , the following observation vector and 
time vector can be obtained for the kth segment of the 
signal 
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Where ]:[ nmy  represents the elements number m to n of 
a supposed vector y.  
 
Generally, in order to apply the BLUE algorithm to the 
problem, the observation and linear regression vectors 
must be in column and row formats, respectively. The 

observation vector kY  and time vector kT
 in the kth 

interval are obtained using Equation (12) as follows 
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Where k0y
 and k0t

 are the initial values of the kth 
interval and should be chosen as to the continuity of the 
entire estimated signal is guaranteed. 
 
In order to determine the matrix consisting of linear 

regression vectors, the time column vector 
( ) 1×NWkT

 is 
substituted in the following matrix 
 

( ) ( )[ ]p

kkkk
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Where the operator 
m*)(⋅

increases each element of the 

matrix kT  to the power of m. Suppose that in the 

observation vector kY , the signal is embedded into an 

additive noise with covariance matrix k� . If so, it can be 
shown that the best linear unbiased estimation of 
unknown parameters in the presence of correlated noise 
is     as     follows     (Soderstrom    and     Stoica,    1989) 
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T
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In which, k�  includes the parameters of the polynomial in 

an ascending fashion, that is, 
T

pkkkk aaa ],,,[ 21 �=�
 The 

details to derive this equation as well as the 
corresponding exhaustive explanation of this type of 
estimation can be found in identification textbooks 
(SÖderstrÖm and Stoica, 1989; Kay, 1979). Presenting a 
simple example, it is shown how to apply the continuity 
condition to the beginning and end of each interval. 
Consider a sequence consisting of 17 samples with the 

window length 12=NW  as depicted in Figure 4.  
improperly-detected QRS elimination algorithm is In 

this figure, the solid line represents the original signal 
which should be estimated by the PPF algorithm and the 
dashed lines illustrate polynomials fitted to the signal in 
each segment. As can be observed in this figure, the 
estimated signal is not appropriately fitted to the original 
signal at end point A (end effect 1). To solve the problem, 
it is assumed that the corresponding polynomial of each 

interval is fitted to NW ′  number of samples, where 

augNN WWW +=′
, and augW

 is the number of samples 
borrowed from the next adjacent window augmented to 

the vector kT . According to Equation (12), vectors kobs,y  

and kobs,t  are obtained as follows 
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In this way, the polynomial parameters are determined 
from Equation (15) and the corresponding signal in this 
interval can be estimated as follows: 
 

( )[ ] kNNk tWkWk 01:)1(1 −+−+=tT
  (17) 
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kkk yt 0)(ˆ += ��y
               (19) 

 
Applying this method, the end effect 2 (end point B) is 
arisen out of the interval. However, samples only from the 

beginning to the end of segment ( NW ) are considered as 
the estimated signal. Therefore, the end effects are 
eliminated.  

It should be noted that the signal in this interval is 
estimated using a rather high-order polynomial which has 
low generalization power for the estimation  in  endpoints. 



Ghaffari et al.         035 
 
 
 

1 
  2 

  3 
  4 

  5  6 
  7 

  8 
  9 

  10   1 7 
  11   12 

  13 
  14 

  15   16   
Sample #   

y(t)   

W N 
  

W aug 
  

End Effect 2 
  

End Effect 1 
  

A   

B  

O  

Original signal 
Typical fitting 
Fitting after 
augmentation 

 
 
Figure 4. Schematic representation of end effects in the PPF algorithm and extra samples augmentation. 

 
 
 

Choosing some samples from the interval k+1, to 
proceed the last sample of the interval k, results in more 
accurate estimation for endpoint and consequently a 
smoother estimation is obtained for the original signal in 
the interval k. The last point of the interval k and the 
corresponding time will be used as the initial conditions 
for the next interval, k+1. That is 
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�
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=
=
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+
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endt

endy

kk

kk

T
Y

       (20) 
 
Finally, in order to conduct estimation in the interval k+1, 
the linear regression matrix and the observation vector 
should be obtained from Equation (19) and the first 

elements in the vectors )1(, +kobst
 and )1(, +kobsy

 should be 

replaced by )1(0 +ky
 and )1(0 +kt

, respectively.  

Generally, it should be noted that the window length NW  
depends upon the sampling frequency, frequency 
contents of the original signal, the order of the polynomial 
and noise power. After fulfillment of numerous simula-
tions, it is empirically concluded that this performance 
would be highly improved if the following criterion is used. 
 


�
�

�
�
�= pfFW domSN 15,3,
4
1

minλ
                (21) 

Where: 
 

SF
 represents the sampling frequency, 

domf
 is the largest frequency existing in the signal, and 

p is the order of the polynomial. 

Also, λ  is a proportion coefficient which varies between 

1 and 1.5 ( 5.11 ≤≤ λ ) and depends on the approximate 
standard deviation of the noise. 

In this study, for the values of noise standard deviation 

less than 4 (
4<Nσ

), λ  is set to 1 ( 1=λ ) and for the 

values of noise standard deviation more than 4 ( 4>Nσ ), 

it was considered equal to 1.5 ( 5.1=λ ).  
 
 
Cardiogenic shock and risk scoring model 
 
Cardiogenic shock is a certain state in which slight 
systemic cardiac output leads to tissue hypoxia. For the 
values of cardiac index less than or equal to 2.2 
liter/min/m2 (or 1.8 liter/min/m2 according to physiologists) 
cardiogenic shock will occur. From blood pressure 
perspective, a systolic blood pressure less than 80 or 90 
mmHg can be a symptom of shock syndrome. However, 
it is proven that hypotension is not the only cause of 
shock occurrence. The hemodynamic parameters which 
contribute  significantly  to the  detection  or  prediction  of 
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Figure 5. The diagram of cardiogenic shock occurrence after cumulative MIs showing deterioration of cardiac pumping 
capability (Hasdai et al., 2008). 

 
 
 
shock are namely as heart rate, right atrial pressure, right 
ventricle systolic/diastolic pressure, pulmonary artery 
pressure, left atrial pressure, left ventricle systolic/ 
diastolic pressure, aortic pressure, cardiac output, 
cardiac index, stroke volume, left ventricle diastolic 
volume, ejection fraction, systemic resistance, total 
pulmonary resistance, stroke work index of the left 
ventricle, and baseline cardiac power out. Generally, 
considerable decrease will occur in the systemic tissue 
perfusion during cardiogenic shock. The main 
consequences of cardiogenic shock include renal failure, 
changes in pulmonary function, changes in the skeletal 
muscle, dysfunction in the gastrointestinal system, 
decrease in blood pressure and blood volume, and 
damages to the brain. The schematic diagram of the 
cardiogenic shock is illustrated in Figure 5, in which 
successive MI cause the cardiac pumping level descend 
to the below of rest baseline. In this way, cardiogenic 
shock occurs which can rapidly lead to death (Hasdai et 
al., 2008). 

In this section, a shock predictor model (Hasdai et al., 
2000) is introduced in which factors such as age, heart 
rate, SBP, DBP, weight and some other clinical features 
namely as miscellaneous factors are incorporated. In the 
first step, based on clinical data and significance of the 
factor under study, a score is allocated to each feature. 

For instance, age is a variable strongly increasing the 
probability of cardiogenic shock, or mean arterial 
pressure (MAP) which is derived from SBP and DBP and 
considerably is associated with the occurrence of 
cardiogenic shock. Therefore, a high score should be 
allotted to these factors. Afterwards, a total score is 
calculated as the sum of the scores assigned to each 
factor. Finally, it would be possible to predict the 
probability of cardiogenic shock for the patient under 
consideration. As a case in view, consider a 71-year-old 
60-kg female with a history of hypertension, who presents 
with a systolic blood pressure of 126 mmHg, a diastolic 
blood pressure of 64 mmHg, and a heart rate of 123 
beats/min. According to the model of Hasdai et al., this 
patient would have a total score of 37+17+39+5+10+5+ 
8+17+3+2+5=148. This score corresponds to predicted 
probability of 30% for cardiogenic shock (Hasdai et al., 
2000). 
 
 
Computer implementation of Hasdai et al model 
 
For Computer Implementation of Hasdai et al Model, an 
adaptive network-based fuzzy inference system (ANFIS) 
is trained using the information obtained from the their 
original work (Hasdai et al., 2000). The purpose  of  using  
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Figure 6. The ANFIS structure used for cardiogenic shock predictor based on HR, SBP, DBP, age, gender and weight. 
 
 
 
ANFIS was to consider the mutual influence of 
parameters in the evaluation of error probability, an 
ANFIS network is implemented. Using this network, it will 
be possible to incorporate the possible mutual influences 
between risk parameters to the calculation of shock 
occurrence probability. Adaptive neuro-fuzzy networks 

are actually fuzzy inference systems which are translated 
to a neural network language and using the neural 
network features, the actual system is trained based on 
the input-output data and then turned into a fuzzy model. 
More details about ANFIS can be seen at (Jang 1993). 

According to Figure 6, inputs such as  HR,  SBP,  DBP,  
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Figure 7. SIMULINK circuit used to implement the trained ANFIS with marked input and outlet ports. 

 
 
 
age, gender, and weight are included in the first layer and 
incorporated to fuzzy membership functions. The outputs 
of neurons are the membership values of inputs in fuzzy 
values. This part of the neuro-fuzzy network is equivalent 
to the IF part of the fuzzy inference system. In the Input 
Rules Layer, resulted membership values are passed 
through a T-norm and the firing strength of each rule is 
determined. In the output membership layer, using the 
final relationships, the output of each IF-THEN rule is 
determined. For each of the parameters of HR, SBP, and 
DBP, five Gaussian memberships are considered with a 
Sugeno Difuzzification algorithm. For all other parameters 
of the Hasdai et al model, 3 triangular memberships are 
selected as to less computational burden and complexity 
is achieved. The structure of this network is illustrated in 
Figure 5. 

The resulted ANFIS model is used in a SIMULINK 
environment according to Figure 7 to calculate the risk of 
cardiogenic shock occurrence. As already stated, the 
variable describing shock in the Hasdai et al. model can 
be obtained using an equation similar to the following   
 
XTOT = XAGE + XHR + XSBP + XDBP + XWGT +XMIL + XTRT + 
XKLP + XMSC                                          (22) 
 
More details about the Hasdai et al. risk score model can 
be found in (Hasdai et al., 2000). As understood from 
Equation 22, the total sum of scores will yield the shock 
overall index and using a final mapping, the percentage 
of the probability of shock occurrence can be calculated 
(Hasdai et al., 2000). 

Names of records extracted from Physionet database 
are presented in Table 1. From the parameters needed in 
Hasdai et al. model, HR, SBP, DBP, age and gender are 
available. However, other parameters such as treatment, 

MI location, Killip class, weight, and other miscellaneous 
factors are not known and therefore are set equal to 
average values, according to Table 1. In Figure 8, the 
parameterized Gaussian and triangular membership 
function are illustrated. According to this Figure, each 
Gaussian membership function is specified by two 
parameters (�, �) and each triangular membership 
function is determined by three parameters (�L, �C, �R).  

After training of an ANFIS network with the structure 
shown in Figure 5 using MIMICII database according to 
Table 1 specifications, the parameters of each 
membership of the ANFIS structure are obtained as 
shown in Table 2.  
 
 
Finding MAPDRs using PPF algorithm 
 
Since MIT-BIH Database includes long time signals 
(more than 30 h), the outputs of BPMHT and ECGMHT 
algorithms are averaged in one-minute intervals. If so, the 
size of data to be processed will be 1/125 of the size of 
original data, (the sampling frequency of MIMIC II 
Database is 125 Hz). Finally, MAPDR calculations are 
conducted using the average data.  

In order to find MAPDRs, a window with the length WDR 
is first slid sample to sample on the smoothed averaged 

waveform smbp,Y
 obtained from PPF algorithm that is, 

)( ,, origbpsmbp PPF YY =
. The MAP waveform origbp,Y

 is 
calculated using SBP and DBP pulses, as follows, 
(Guyton 1996) 

 

)(
3
2

, mmHgDBPSBP
origbp

YYY +≈
      (23) 
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Table 1. Specifications of the subjects under study obtained from MIMIC II Database. Due to the lack of sufficient clinical data, treatment, MI 
location and Killip Class are selected as to the corresponding risk scores are equal to zero. 
 

Miscellaneous grade Killip class MI Location Treatment # of mean samples Record # (gender, age) 
10 I Other TPA 22143 s21775 (M-80) 
13 I Other TPA 24704 s20658 (F-72) 
13 I Other TPA 8287 s22466 (F-78) 
10 I Other TPA 4294 s05336 (M-45) 
13 I Other TPA 17506 s06349 (F-89) 
10 I Other TPA 10025 s08718 (M-84) 
10 I Other TPA 5880 s20794 (M-84) 
10 I Other TPA 11506 s24799 (M-66) 
13 I Other TPA 7410 s26318 (M-70) 
10 I Other TPA 14412 s14204 (F-84) 
10 I Other TPA 15717 s25699 (M-39) 
10 I Other TPA 6487 s07125 (M-51) 
13 I Other TPA 18804 s19208 (F-79) 
13 I Other TPA 16042 s12821 (F-77) 
10 I Other TPA 2898 s06637 (M-79) 
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Figure 8. Parameterization of Gaussian and triangular membership functions. 

 
 
 

Where SBPY  and DBPY  are SBP and DBP vectors. 
 
The window length WDR is equal to the number of 
samples long as 30 min. Each time, the drop index (DI), 
MAPDR, is calculated as follows: First, the signal 
segment in the kth window is obtained as: 
 

):(,, DRsmbpkseg Wkk +=YY
                      (24)     

In the next step, the derivative of the vector kseg ,Y  is 
calculated with respect to time as follows: 
 

)( ,, ksegkseg diff YY =�

                  (25)  
     

Where the operator )(⋅diff  represents the difference 
between the present sample and  the  previous  one. The 
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Table 2. Memberships parameters of the ANFIS structure obtained after training (MF:Membership function, Gss: Gaussian MF, Tra: Triangular MF). 
 

MF#5 type parameters MF#4 type parameters MF#3 type parameters MF#2 type parameters MF#1 type parameters Variable/parameter (Range) 
Gss(251.2841,18.5647) Gss(233.5789,24.6312) Gss (219.8417,45.2966) Gss (104.0193,23.8715) Gss (48.1514,21.2317) HR [40 - 260]beats/min 
Gss (279.8637,18.2849) Gss (251.7119,23.3216) Gss (227.0328,45.6217) Gss (101.3261,21.2519) Gss (74.9817,19.1744) SBP [80 - 280] mmHg 
Gss (191.9122,15.2361) Gss(186.5611,20.1713) Gss(154.4349,19.6438) Gss (97.1583,21.4567) Gss (44.2567,14.6494) DBP [40 - 200] mmHg 

--- --- Tra (70.1658,81.0429,92.6657) Tra(44.0741,58.3219,73.8719) Tra (14.2316,25.5469,49.1799) AGE [20 - 90] years 
--- --- Tra (1.3383,1.4348,1.6524) Tra (1.2759,1.6949,1.8927) Tra(0.5728,1.7149,2.3327) GENDER(Male, Female) 
--- --- Tra (171.0561,198.5255,264.9145) Tra (94.5847,147.4595,189.1541) Tra (37.5121,61.2353,101.5418) WEIGHT [40 - 220] Kg 

 
 
 
aim of this study is to detect intervals with MAP at 
or below 60 mmHg descending continuously. To 

meet this end, all samples of the vector kseg ,Y�
 in a 

window are summed up. If this total sum is always 
negative when sliding the window forward, it 
would be a marker of MAPDR. On the other hand, 
an increase in the total sum indicates an 
ascending trend for MAP. Therefore, 
 

�
=

≤=
DRW

n
kseg mmHgMAPnkDI

1
, 60),()( Y�

   (26) 
 

From the resulted signal DI, negative parts with 
high duration should be highly considered. Thus, 
  

[ ])(15.0 DIsignMAPDR −=           (27) 
        
Where the index MAPDR represents a signal with  
the value of 1 for MAPDR and zero for ascending  
trend in MAP signal. 

If the drop index descends continuously for 90% 
of the window length when moving forward, a 
dropping regime will be assigned to that specific 
period of time. 
 
 
Normalization of data 
 
Suppose that the supposed vector X  has  sample  

mean µ and sample variance �2, the normalized 
vector XNorm that has zero mean and unit variance 
is obtained from the following simple 
transformation 
 

σ
µ−= XXNorm

      (28) 
 
Normalization of shock probability diagram helps 
us obtain a comprehensive comparative criterion 
for all subjects. 
 
 
RESULTS AND DISCUSSION 
 
Implementation of MHT algorithm to ECG 
signal (ECGMHT) 
 
Numerous databases with different sampling 
frequencies and signal to noise ratio are used in 
this study to validate the performance of the 
proposed detection algorithm. To validate the 
QRS detection and delineation algorithm, MITDB 
(Fs = 360Hz), TWADB (Fs = 500Hz), EDB (Fs = 
250Hz), QTDB (Fs = 250Hz) and also high 
resolution Holter data (MEDSET®-1000Hz, 3-
Channel, 32-bits) which contain annotation files 
are used (CHECK#0). It should be noticed that in 
confusing situations, results were delivered to the 
cardiologist and accordingly, the detection 

algorithm was revalidated (CHECK#1). In cases of 
QRS with very abnormal morphologies, the results 
were also checked by some residents 
(CHECK#2).  

The results of the application of the MHT 
method are shown in Tables 3 to 7, with the 
average values of 99.80 and 99.85% for sensi-
tivity and positive prediction, respectively. The 
false negative (FN) occurs when the algorithm 
fails to detect a true beat (actual QRS) conducted 
in the corresponding annotation file of the MIT-
BIH record and a false positive (FP) indicates a 
false beat detection. Sensitivity (Se), positive 
prediction (P+), (Benitez et al., 2001), are 
calculated straightforwardly as follows: 
 

Sensitivity (%) = 
%

FNTP
TP
+           (29) 

 

Positive predictivity (%) = 
%

FPTP
TP
+          (30) 

 
Two graphs will be representing the output of the 
MHT algorithm. The first graph depicts the output 
of the applied transforms as well as adaptive 
thresholds in each window (Figure 2e and 2g). 
Observing these figures, one one can assess the 
accuracy of the results and the corresponding 
parameter values. For appropriate values of 
thresholds, acceptable results would be expected 
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Table 3. Performance evaluation of several QRS detection algorithms: Application to MITDB. 
  

Detection algorithm # of annotations TP FP FN Error (%) Se (%) P+ (%) 
This study 109428 109215 160 213 0.34 99.80 99.85 
Martinez et al. [2004] 109428 109208 153 220 0.34 99.80 99.86 
Li et al. [1995] 104182 104070 65 112 0.17 99.89* 99.94* 

Hamilton et al. [1986] 109267 108927 248 340 0.54 99.69 99.77 
Pan et al. [1985] 109809 109532 507 277 0.71 99.75 99.54 
Moody et al. [1982]** 109428 107567 94 1861 1.79 98.30 99.91 

 

*In this case a discrepancy is found between the claimed results and the review paper [Natalia et al., 2008]. 
** Also called ARISTOTLE software. 

 
 
 

Table 4. Performance evaluation of QRS detection algorithms: Application to QTDB. 
 
Detection algorithm # of annotations TP FP FN Error (%) Se (%) P+ (%) 
This study 86892 86819 94 73 0.19 99.92 99.89 
Martinez et al. [2004] 86892 86824 107 68 0.20 99.92 99.88 
Moody et al. [1982] 86892 84458 459 2434 3.33 97.2 99.46 

 
 
 

Table 5. Performance evaluation of QRS detection algorithms: Application to EDB. 
 

Detection algorithm # of annotations TP FP FN Error (%) Se (%) P+ (%) 
This Study 787103 783992 4134 3111 0.92 99.60 99.47 
Martinez et al. [2004] 787103 784059 4077 3044 0.90 99.61 99.48 
Moody et al. [1982] 787103 748468 10405 38635 6.23 95.09 98.63 

 
 
 

Table 6. Performance evaluation of QRS detection algorithms: Application to TWADB. 
 

Detection algorithm # of annotations TP FP FN Error (%) Se (%) P+ (%) 
This Study 11789 11760 24 29 0.45 99.75 99.80 

 
 
 

from the method; however, for very low values of 
thresholds some waves other than the actual R-waves 
will be improperly detected. Furthermore, for high values 
of thresholds some QRS complexes will not be detected 
correctly. In these two cases, the parameter values 
should be re-adjusted and the algorithm should be 
applied again to the original signal until acceptable 
results are obtained. It should also be noticed that the 
window length can be adjusted as another parameter so 
that more accurate results are gained from the algorithm. 
This window length will generally be equal to 550 ~ 700 
milli seconds (this value obtained from practical 
application of the MHT algorithm) for cases of PVC not 
observed in the original signal. However, if PVCs exist in 
the original ECG, the parameter value of 500 ~ 550 milli 
seconds will lead better results. Finally, in the second 
Figure, the corresponding R-wave in the original signal is 
represented. The annotation files of the MIT-BIH 
Arrhythmia Database include information about normal 

beats (N), PVCs (V) and changes in the signal quality (~). 
The results of the MHT algorithm are compared to this 
information for the purposes of validation and the 
outcomes including True Positive (TP), False Negative 
(FN) and False Positive (FP) values are calculated and 
presented in Table 3. The resulted values for sensitivity 
and positive prediction are acceptable results in the 
context of QRS detection, (Natalia et al., 2008). 
 
 
Characterization of end-systolic and end-diastolic 
pulses of the arterial  
 
Blood pressure (ABP) waveform using the MHT 
algorithm (BPMHT) 
 
In this section, in order to generalize the application of 
the MHT algorithm, it is applied to ABP waveforms of all 
18 subjects of the MIT-BIH Polysomnographic   Database 
(http://www.physionet.org/physiobank/database/slpdb/) 
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Table 7. Performance evaluation of MHT algorithm on high-resolution 24-hour Holter database including a vast spectra of heart rates 
(CHECK#0, CHECK#1). 
 
Holter record # of beats # of PVC* # of PAC** TP FP FN Error (%) Se (%) P+ (%) 
PVCDAT 1-5 188531 53 0 52 0 1 1.89 98.11 100 
PVCDAT 6-10 174515 148 0 147 1 1 1.35 99.32 99.32 
PVCDAT 11-15 179428 312 0 310 2 2 1.28 99.36 99.36 
PVCDAT 16-20 189749 1253 0 1247 9 6 1.20 99.52 99.28 
PACDAT 1-4 163934 0 323 322 1 1 0.62 99.69 99.69 
PACDAT 5-8 157635 0 611 610 1 1 0.33 99.83 99.83 
PACDAT 9-12 107891 0 5513 5505 12 8 0.36 99.85 99.78 
PAVDAT 1-4 114204 164 22 185 2 1 1.61 99.46 98.93 
PAVDAT 5-8 171315 237 52 287 2 2 1.38 99.31 99.31 
PAVDAT 9-12 197591 1153 219 1367 9 5 1.02 99.66 99.35 
PAVDAT 13-15 108344 1636 788 2419 14 5 0.78 99.79 99.42 
Total 1,753,137 4956 7528 12451 53 33 0.69 99.73 99.58 
 

* Premature ventricular contraction ** Premature atrial contraction. 
 
 
 
and the corresponding end-systolic and end-diastolic 
pulses of the ABP waveform are extracted. 
The results of the algorithm applied to blood pressure 
waveforms are shown in Table 8. The mean values of 
99.80 and 99.86% are obtained for sensitivity and 
positive prediction, respectively. 
 
 
Simulation of PPF algorithm 
 
In this section, a signal with a chirp frequency is 
embedded into a colored noise. Then, the variance of the 
sequence of white noise is increased with a specific 
increment and the estimated signal is extracted. The 
standard deviation of the difference between the 
estimated signal and the original signal is represented in 
Figure 9. As can be seen in Figure 6b, the standard 
deviation of estimation will increase linearly with an 
increase in the noise standard deviation. Therefore, it can 
be inferred that the performance of PPF algorithm 
changes in a uniform fashion with an increase in noise 
standard deviation. In other words, for a considerable 
increase in noise standard deviation, a uniform 
performance is resulted from the PPF algorithm. In 
Figures 10 - 12, HR, SBP, DBP and MAP signals 
averaged for three typical subjects of the MIMIC II 
Database are illustrated. Fast fluctuations can be 
observed in these Figures which are significantly due to 
regulating mechanisms rather than measurement noises. 
To obtain more accurate results, these fluctuations 
should be decreased while the signal mean value should 
not be destroyed by the reduction algorithm. Due to the 
difficulties in the recognition of the frequency contents of 
these fluctuations, common digital filters cannot be 
implemented for this purpose (Rangayyan, 2002). On the 
other hand, the reference signal should be known so that 
adaptive filters can be used (Kay, 1979). Therefore, an 
appropriate mean estimator is needed to weaken the 

fluctuations not similar to white noise. An averaged MAP 
signal with the corresponding PPF resulted smoothed 
signal for a typical subject is depicted in Figure 13. The 
magnified part of Figure 13 illustrates the operation of the 
PPF algorithm in the elimination of MAP fluctuations. 
Generally   speaking, elimination of   the MAP and HR 
fluctuations will lead to higher stability and accuracy of 
the detection algorithms. 

The probability of cardiogenic shock occurrence and 
scaled MAPDR graphs are represented in Figure 14. The 
red graphs in this figure have a baseline which is a sign 
of no MAPDR; however, abrupt increase to the maximum 
value is an indicator of MAPDR. As can be seen in Figure 
14, a high peak between the time 29 and 30 h in the 
probability of shock occurrence graph is preceded by 
continuous fluctuations in the corresponding red graph. 
The results of this study show that all high peaks with 3 to 
4 min duration in the probability of shock occurrence 
graph are preceded by peaks in MAPDR signal with the 
duration    of   20   min  or  more  (Figures 10, 11 and 12). 
Therefore, as a result of this study, MAPDRs can be used 
as specific markers for the prediction of cardiogenic 
shock. It should be noted that there may exist some 
continuous fluctuations in MAPDR with no corresponding 
high peaks in the probability of shock occurrence graph. 
This can be due to short duration of such fluctuations. In 
summary, these fluctuations should have duration of 20 
min or more so that high peaks with the duration of 3 or 
more minutes occur in probability of shock occurrence 
diagram.  
  
 
Conclusion 
 
In this study, in order to consider the mutual influence of 
parameters on the evaluation of shock probability, a 
Sugeno Adaptive Network-based Fuzzy Inference 
System-ANFIS was trained using Hasdai et al
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Table 8. Application of the MHT algorithm to the MIT-BIH Polysomnographic Database and obtained results. 
A total number of 650000 samples is chosen for each record. 
 

MIT-BIH record Total # of beats FP FN FP+FN FP+FN (%) Se (%) P+ (%) 
slp01a 2797 0 5 5 0.18 99.82 100 
slp01b 2834 2 3 5 0.18 99.89 99.93 
slp02a 4028 0 15 15 0.37 99.63 100 
slp02b 3408 0 7 7 0.21 99.79 100 
slp03 3158 0 0 0 0 100 100 
slp04 3593 0 0 0 0 100 100 
slp14 2857 0 0 0 0 100 100 
slp16 3768 0 0 0 0 100 100 
slp32 3041 0 1 1 0.03 99.97 100 
slp37 3620 0 0 0 0 100 100 
slp41 2831 50 30 80 1.06 99.4 99.54 
slp45 3370 7 7 14 0.42 99.79 99.79 
slp48 2981 11 2 13 0.44 99.93 99.63 
slp59 3319 0 5 5 0.15 99.85 100 
slp60 3271 7 0 7 0.21 100 99.79 
slp61 3177 25 7 32 1.01 99.78 99.22 
slp66 3093 50 60 110 0.82 99.67 99.51 
slp67x 3095 0 36 36 1.16 98.84 100 
Total # of subjects 18 Sensitivity % 99.80 
Total # of complexes 58241 Positive predictivity % 99.86 
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Figure 9(a). Graphical representation of the performance of PPF algorithm: Solid lines are noisy observation as well as signal estimation and 
dashed line represents the reference signal. (b) The standard deviation of estimation error versus standard deviation of the i.i.d. noise sequence  

 
 
 

parameters as input, with appropriate membership 
functions for each parameter. Using this network, it would 
be possible to incorporate the possible mutual influences 
between risk parameters such as heart rate (HR), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), 
age, gender, weight and some miscellaneous factors to 
the calculation of shock occurrence probability. 

MHT algorithm was introduced for the detection of QRS 
complexes and blood pressure pulses on the basis of 
some mathematical operations on the Hilbert transform of 
the ECGMHT and ABP signals. It was then customized 
with two versions of ECGMHT and BPMHT to be applied 
to ECG signal and ABP waveform, respectively. After ap-
plying this algorithm to the MIT-BIH Database,  the  value
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Figure 10. (Top) HR, SBP, DBP and MAP trends averaged in one-minute intervals of s22466 of MIMIC II database 
obtained as outputs of BPMHT and ECGMHT algorithms, (bottom) normalized shock probability obtained from 
ANFIS and MAPDR signal. 
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Figure 11. (top) HR, SBP, DBP and MAP trends averaged in one-minute intervals of s24799 of MIMIC II database 
obtained as outputs of BPMHT and ECGMHT algorithms, (bottom) normalized shock probability obtained from ANFIS 
and MAPDR signal. 
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Figure 12. (Top) HR, SBP, DBP and MAP trends averaged in one-minute intervals of s25699 of MIMIC II database 
obtained as outputs of BPMHT and ECGMHT algorithms, (bottom) normalized shock probability obtained from ANFIS 
and MAPDR signal. 
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Figure 13. Averaged MAP trend and the corresponding PPF smoothed version for a typical subject. The magnified 
part shows the capability of the algorithm in the elimination of fast fluctuations 
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Figure 14. Magnifications in the MAPDR occurrence and cardiogenic shock probability trends. In the left 
graph, fast fluctuations occur with no high duration. However, fast fluctuations with high endurance as well as 
a peak in the probability occurrence trend is observed in the right hand plot. 

 
 
 
of 99.80 and 99.85% were obtained for sensitivity and 
positive prediction, which are remarkably acceptable in 
the field of wave detection. 

In the next step, the PPF algorithm was developed for 
the elimination of fast fluctuations with unknown statistical 
specifications. The ECGMHT and BPMHT algorithms 
were then applied to 15 subjects of MIMIC II Database 
and the resulted averaged MAP, SBP, DBP and HR 
trends were next smoothed using the FFT algorithm. 
Afterwards, a new measure entitled as MAPDR was 
proposed as an indicator of descending behavior in the 
MAP trend when AHE occurs and was calculated using 
the resulted PPF signals. 

In the next step, using the trained ANFIS model, the 
probability of shock occurrence for each subject was 
computed and then depicted. A comparison between the 
probability of shock occurrence and MAPDR trends 
indicates that for a sequence of MAPDRs as long as 20 
min or more in the MAP trend, there would exist a high 
peak with the duration of 3 to 4 min in the probability of 
shock occurrence diagram. Finally, as a result of this 
study, MAPDRs were specified as appropriate markers of 
the risk of cardiogenic shock when AHE occurs.  
 
 
List of acronyms: AHE, Acute hypotensive episode; MHT, modified 
Hilbert transform; ABP, Arterial blood pressure; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; 

PPF, piecewise polynomial fitting; BLUE, the best linear unbiased 
estimation; ANFIS, adaptive network-based fuzzy inference system; 
MF, membership function; MAPDR, mean arterial pressure dropping 
regime; HR, heart rate; MIMIC, name of Physionet database; BP, blood 
pressure; BPMHT, name of the blood pressure pulse detector; 
ECGMHT, name of the QRS detector; NSP, normalized shock 
probability; MI, myocardial infarction; PVC, premature ventricular 
contraction; PAC, premature atrial contraction; FP, false positive; FN, 
false negative; TP, true positive; Se, sensitivity; P+, positive predictivity; 
DI, dropping index. 
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