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The major objectives of this study were to identify spectral characteristics associated with rice yield and 
to establish their quantitative relationships. Field experiments were conducted at Shi-Ko experimental 
farm of TARI’s Chiayi Station, during 2001 to 2005. Rice cultivar Tainung 67 (Oryza sativa L.), the major 
cultivar grown in Taiwan, was used in the study. Various levels of rice yield were obtained via nitrogen 
application treatments. Canopy reflectance spectra were measured during entire growth period and 
dynamic changes of characteristic spectrum were analyzed. Relationships among rice yields and 
characteristic spectrum were studied to establish yield estimation models suitable for remote sensing 
purposes. Spectrum analysis indicated that the changes of canopy reflectance spectrum were least 
during booting stages. Therefore, the canopy reflectance spectra during this period were selected for 
model development. Two multiple regression models, constituting of band ratios (NIR/RED and NIR/GRN) 
were then constructed to estimate rice yields for first and second crops separately. Results of the 
validation experiments indicated that the derived regression equations successfully predicted rice yield 
using canopy reflectance measured at booting stage unless other severe stresses occurred afterward.  
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INTRODUCTION 
 
Yield maps are the basis of making precision 
management decisions. Through accumulated yield maps 
during past seasons, maps for field management can be 
produced. Regions always having higher or lower yields 
can be easily delineated, which can be very useful for 
diagnosing the causes responsible for low yield. Proper 
management strategies can then be applied. Where 
available, remotely sensed images showing spatial and 
spectral variations resulting from soil and crop 
characteristics are important source of data for making 
yield maps (NRC, 1997). A remote sensed yield map 
would not be affected by the inaccuracies (problems 
connected with grain flow dynamics and accurate logging 
of geographic position) associated with combine yield 
monitors, as suggested by Lark et al. (1997) and Arslan 
and Colvin (1999). However, difficulty results from a lack 
of valid regression models to convert imagery spectral 
information to a yield map. 

Rice is one of the world’s major staple foods, and paddy 
rice fields account for approximately 15% of the world’s 

arable land (IRRI, 1993). Remote sensing data can 
acquire temporal, large spatial and vast spectrum data 
and also track the past data. Remote sensing, which 
quantitatively measures the light reflected from the 
surface of the earth, is a powerful tool for studying 
regional-scale ecosystem dynamics. So, remote sensing 
techniques have the potential to provide information on 
agricultural crops quantitatively, instantaneously and 
non-destructively over large areas. Ability to estimate rice 
yields within fields from remote sensing images is not only 
fundamental to applications of precision agriculture, but 
can also be very useful to governmental administrators for 
food provisions management. Though many researches 
have been devoted to rice planting acreage estimation 
(Leblon et al., 1991; Prince, 1991; Bouman, 1992; 
Wiegand et al., 1992; Field et al., 1995; Clevers and 
Leeuwen, 1996; Bach, 1998; Moulin et al., 1998; 
Reynolds et al., 2000; Serrano et al., 2000), few studies 
have been conducted attempting to relate canopy 
reflectance spectra measurements to grain yields.  Basic  
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Table 1. Analysis of variance for rice yield at four nitrogen 
application rates (0, 45, 90, 180 kg N ha

-1
) and five years (2001 to 

2005). 
 

Sources of variation df Mean squares Pr 

Year (Y) 4 4.19026276 <0.0001 

Nitrogen rate (N) 3 7.00343400 <0.0001 

Y × N 12 0.58496987 0.2310 

 
 
 
studies regarding the timing of reflectance measurements 
and regression models for rice yield prediction/estimation 
are still very lacking. Our objectives were thus to collect 
the reflectance spectrum of rice canopies, to identify 
spectral characteristics associated with rice yield, and to 
establish their quantitative relationships. 
 
 
MATERIALS AND METHODS  

 
Study site and experimental treatments  

 
The study was conducted at Shi-Ko experimental farm of TARI’s 
Chiayi Station (23°35’4’’ N, 120°24’ E) during 2001 to 2005 growing 
seasons. The soil at this site is a silt clay loam (mixed hyperthermic 
Haplaquepts). Rice cultivar Tainung 67 (O. sativa L.), the major 

cultivar grown in Taiwan, was used in the study. Different nitrogen 
levels, 0, 45, 90, 180 kg N ha

-1
, were used in each year to affect rice 

yield. Field plots were shifted every year to other well-fertilized 
production fields to avoid any residue fertilizer effect from the 
previous year. The plots in each year were all arranged in 
randomized complete block design with three replications. Individual 
plot dimensions were at least 10 m × 10 m.  

The rice was grown under conventional two-season cropping 
system. Three-leaf old rice seedlings were transplanted in early 
February for first season crop, and in early July for second season 
crop. Transplanting density was 0.15 m by 0.25 m with three plants 
per hill. Other than nitrogen, all plots were fertilized with 150 kg P2O5 
ha

-1
 and 150 kg K2O ha

-1
 at the time of transplanting as the basal 

dose. The nitrogen fertilizer, fractionated as three quotas, were 
applied as basal at transplanting, and top-dressed at active tillering 
and panicle initiation stages, respectively. In-season weed and pest 
controls were practiced according to regional recommendations. 

 
 
Canopy reflectance measurement  

 
Canopy reflectance spectra were measured during entire growth 
period of each cropping season using a portable spectroradiometer 
(LI-1800, LICOR) with remote cosine receptor (LI-1800-02, LICOR) 
attached to a 1.5 m extension arm. The arm was held 1 m above the 

canopy; at this height, a target area of 1 m-radius may have 
occupied 80% of the view. The man holding the extension arm 
always wore dark clothes and stands sideways to reduce 
measurement error. All the measurements were made near midday, 

within 2 h  solar noon. Incident and reflected solar radiations were 
measured by facing the remote cosine receptor upward and 
downward, respectively. The measurements were taken over the 
wavelength range from 400 to 1100 nm at a scanning interval of 10 
nm and executed consecutively three times per subplot to reduce 

the possible effect of changing sky conditions. The reflectance of 
canopies was then calculated from the mean of three repetitions.  

Incremental values of spectral reflectance were averaged  within  

 
 
 
 
0.45 to 0.52 μm, 0.52 to 0.60 μm, 0.63 to 0.69 μm, and 0.76 to 0.90 
μm to give, respectively, values of blue (BLU), green (GRN), red 
(RED), and near-infrared (NIR) bands of reflectance. Two 
normalized difference vegetation indices (NDVI and GNDVI) and 
two ratio vegetation indices (NIR/GRN and NIR/RED) were then 
calculated. The dynamic changes of these four vegetation indices 
during growing season were analyzed for each treatment at different 
year and crop season. The indices and timing best for yield 
prediction model development were then selected accordingly. 

 
 
Grain yield estimation 

 
At maturity, grain yield was estimated by hand harvesting three 1 m 
× 1 m area of each subplot. After threshing, fully filled grains sieved 
by wind selection were sun dried. After drying, grain yield per 
subplot was weighted and adjusted to a constant moisture basis of 
13.5% water. Grain yield, vegetation index, year, and season were 
analyzed via ANOVA with a mixed model (Statistica Ver. 6, StatSoft, 
2001). 

 
 
Establishment and validation of rice yield prediction models 

 
Rice yield prediction models were established by regression 
analysis of relationships between grain yields, spectral reflectance 
and vegetation indices using the General Linear Models procedure. 
Independent data of canopy reflectance at booting stage and grain 
yield from different nitrogen rate experiments conducted also at 
Shi-Ko experimental farm on the two crop growing seasons during 

2002 to 2005. The experimental design of the nitrogen experiments, 
with levels of 0, 45, 90, 180 kg N ha

-1
, was similar to those described 

earlier.  
In this study, validation of rice yields prediction models was 

carried out using cross validation method. We judged the model 
fitting abilities with coefficients of determination (R

2
) and root mean 

squared error of cross validation (RMSECV). Finally, we will conduct 
the model diagnostics with scatter plots and residual plots (Neter et 

al., 1999). 
 
 
RESULTS AND DISCUSSION 
 
The ground truth data of rice yield 
 
The main effects of N rate and the interaction between N 
rate and year were statistically significant for yield (Table 
1). Yields were also significantly different among the years 
and crop seasons. These results indicated that rice yield 
variability was not only affected by the amount of applied 
N fertilizers but also by the differences in climatic 
conditions between the years and crop seasons. 
 
 
The features of rice canopy reflectance 
 
Typical temporal changes of rice canopy reflectance 
spectra during first crop season were shown in Figure 1. 
Three weeks after transplanting, rice seedlings were just 
recovering from damages induced by transplanting. At 
this time, percent ground cover was less than 15%. 
Values of reflectance in the visible region were only 
slightly lower than those  in  the  near-infrared  region  



 

 
 
 
 

Table 2. The results of RMSECV and R
2
 for rice yield prediction 

models using different band of spectral reflectance.  
 

First order linear models RMSECV R
2
 

BLUE 1.073 0.059 

GRN 1.103 0.002 

RED 1.023 0.130 

NIR 0.886 0.336 

BLUE GRN 1.077 0.062 

BLUE RED 0.982 0.199 

BLUE NIR 0.791 0.474 

GRN RED 0.974 0.208 

GRN NIR 0.684 0.605 

RED NIR 0.742 0.535 

BLUE GRN RED 0.945 0.261 

BLUE GRN NIR 0.698 0.591 

BLUE RED NIR 0.742 0.538 

GRN RED NIR 0.695 0.592 

BLUE GRN RED NIR 0.702 0.586 

 
 
 
Table 3. The results of RMSECV and R

2
 for rice yield prediction 

models by vegetation index. 
 

First order linear models RMSECV R
2
 

NDVI 0.702 0.582 

GNDVI 0.679 0.610 

SR 0.710 0.573 

NIR/GRN 0.705 0.580 

NDVI GNDVI 0.688 0.601 

NDVI SR 0.709 0.575 

NDVI NIR/GRN 0.702 0.586 

GNDVI SR 0.687 0.602 

GNDVI NIR/GRN 0.718 0.570 

SR NIR/GRN 0.712 0.573 

NDVI GNDVI SR 0.703 0.585 

NDVI GNDVI NIR/GRN 0.725 0.564 

NDVI SR NIR/GRN 0.708 0.580 

GNDVI SR NIR/GRN 0.727 0.562 

NDVI GNDVI SR NIR/GRN 0.738 0.551 

 
 

 
because underlying water and soil contributed most to the 
measured canopy reflectance spectrum. As rice plants 
grew, contribution from the plants gradually increased. At 
active tillering stage, six weeks and nine weeks after 
transplanting, tiller number and leaf area increased much 
more rapidly at rate about 1.3 tillers per day. Accordingly, 
reflectance in near-infrared region increased rapidly as a 
result of increased light scattering by leaves and stems. 
However, the reflectance in the visible region decreased 
due to absorption by pigments, chlorophyll in particular. 
About 12 weeks after transplanting, reflectance in the 
near-infrared region reached the highest  value  of  the  
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season while reflectance in visible portion reached lowest 
value. At later stages, yellowing and wilting of rice plants 
gradually appeared. Therefore, reflectance in visible 
region increased as a result of decreasing chlorophyll 
concentration but reflectance in near infrared region 
decreased due to wilting, the exposing of soil background. 
 
 
The rice yield prediction models 
 
In this study, the rice yield prediction models were made 
using rice yields as dependent variable and different 
bands of spectral reflectance, band ratios and vegetation 
indexes as independent variables. After establishment of 
rice yield prediction models, we used RMSECV and R

2
 

values as criticism to judge the fitting abilities of models 
through cross validation. 

Table 2 is the results of RMSECV and R
2
 for rice yield 

prediction models using different band of spectral 
reflectance. From Table 2, we find that the simple 
regression models with BLUE, GRN, RED and NIR as 
independent variable have higher RMSECV values and 
lower R

2
 values. So, the fitting abilities of these models 

are poor and not suitable for predicting rice yields. But the 
multiple regression models with GRN and NIR as 
independent variable have lower RMSECV values and 
higher R

2
 values which fitting ability are well and suitable 

for predicting rice yields. Other multiple regression models 
with three or four independent variables have lower 
RMSECV values and higher R

2
 values, their fitting abilities 

are most well and suitable for predicting rice yields.  
Table 3 is the results of RMSECV and R

2
 for rice yield 

prediction models by vegetation index (NDVI, GNDVI, 
SRVI and GRVI). From Table 3, we can clearly find that 
the simple regression models with vegetation indexes as 
independent variable have lower RMSECV and higher R

2
 

values than those of the simple regression models with 
different bands of spectral reflectance as independent 
variable. So, the fitting abilities of these models with 
vegetation indexes as independent variable are better and 
suitable for predicting rice yields than those models with 
different bands of spectral reflectance as independent 
variable. In all first order linear models, the model with 
GNDVI as independent variable has the lowest RMSECV 
and the highest R

2
 values than others which is the best 

rice yield prediction model. 
 
 

Diagnostics of rice yield prediction models 
 
When a regression model is considered for an application, 
we can usually not be certain in advance that the model is 
appropriate for that application. Any one, or several, of the 
features of the model, such as linearity of the regression 
function or normality of the error terms, may not be 
appropriate for the particular data at hand. Hence, it is 
important to examine the aptness of the model for the 
data before  inferences  based  on  that  model  are  
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Figure 1. Typical temporal changes of rice canopy reflectance spectra. 

 
 

 

undertaken. 
Figure 2 is the plots of actual and predicted values of 

yield in first order linear models using BLUE, GRN, RED, 
and NIR as independent variable. From Figure 2, it is 
shown that the simple regression models with BLUE, 
GRN, and RED as independent variable appeared over or 
under estimation, but the model with NIR as independent 
variable has better performance. For multiple regression 
models, those performances are better than simple 
regression models. In general, multiple regression models 
with different bands of spectral reflectance as 
independent variables do not appear over or under 
estimation situation except those with BLUE and GRN, 
BLUE and RED, GRN and RED as independent variables.  

Figure 3 is the plots of actual and predicted values of 
yield in linear models using vegetation indexes (NDVI, 
GNDVI, SRVI, GRVI, NDVI and GNDVI, NDVI and SRVI) 
as independent variables. From Figure 3, it is shown that 
the rice yield prediction models with vegetation indexes as 
independent variables do not appear serious over or 
under estimation situation.  

Direct diagnostic plots for the response variable Y are 
ordinarily not too useful in regression analysis because 
the values of the observations on the response variable 
are a function of the level of the predictor variable. Instead, 
diagnostics for the response variable are usually carried 
out indirectly through an examination of the residuals. 
When a linear regression model is appropriate, the 
residuals fall within a horizontal band centered on 0, 
displaying no systematic tendencies to be positive and 
negative. 

Figure 4 is the scatter plots of residual and actual value 
of yield in first order linear models using BLUE, GRN, 

RED, and NIR band values as independent variables. The 
simple regression models with BLUE, GRN, and RED as 
independent variable show declination situation of 
different levels between residual and actual value of yield 
from Figure 4, but the model with NIR as independent 
variable has better performance. For multiple regression 
models, those performances are better than simple 
regression models. In general, multiple regression models 
with three band values as independent variable do not 
show serious declination situations between residual and 
actual value of yield except that with BLUE, GRN and 
RED as independent variables. 

Figure 5 is the scatter plots of residual and actual value 
of yield in linear models with vegetation indexes as 
independent variables. The simple regression models 
with NDVI, SRVI and NIR/GRN (GRVI) as independent 
variable showed declination situation of different levels 
between residual and actual value of yield from Figure 5, 
but the model with GNDVI as independent variable has 
better performance. The multiple regression models with 
two vegetation indexes as independent variables also 
showed declination situation of different levels between 
residual and actual value of yield, which means the fitting 
ability of these models are not so good. But the multiple 
regression models with three vegetation indexes as 
independent variables do not show serious declination 
situations between residual and actual value of yield; 
those models possess better fitting abilities.  
 
 
Conclusion 
 
Ability to estimate rice yields within fields  from  remote
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Figure 2. The plots of actual and predicted value of yield in first order linear models using (a) BLUE, (b) GRN, (c) RED, (d) 

NIR, (e) BLUE and GRN, (f) BLUE and RED, (g) BLUE and NIR, (h) GRM and RED, (i) GRN and NIR, (j) RED and NIR, (k) 
BLUE, GRN and RED, (l) BLUE, GRN and NIR, (m) BLUE, RED and NIR, (n) GRN, RED and NIR, (o) BLUE, GRN, RED 
and NIR. 
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Figure 3. The plots of actual and predicted value of yield in linear models using (a) NDVI, (b) GNDVI, (c) SR, (d) NIR/GRN, 

(e) NDVI and GNDVI, (f) NDVI and SR, (g) NDVI and NIR/GRN, (d) GNDVI and SR, (i) GNDVI and NIR/GRN, (j) SR and 
NIR/GRN, (k) NDVI, GNDVI and SR, (l) NDVI, GNDVI and NIR/GRN, (m) NDVI, SR and NIR/GRN, (n) GNDVI, SR and 
NIR/GRN, and (o) NDVI, GNDVI, SR and NIR/GRN. 
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Figure 4. The scatter plots of residual and actual value of yield in first order linear models using (a) BLUE, (b) GRN, 

(c) RED, (d) NIR, (e) BLUE and GRN, (f) BLUE and RED, (g) BLUE and NIR, (h) GRM and RED, (i) GRN and NIR, 
(j) RED and NIR, (k) BLUE, GRN and RED, (l) BLUE, GRN and NIR, (m) BLUE, RED and NIR, (n) GRN, RED and 
NIR,(o) BLUE, GRN, RED and NIR. 
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Figure 5. The scatter plots of residual and actual value of yield in linear models using (a) NDVI, (b) GNDVI, (c) SR, (d) NIR/GRN, (e) 

NDVI and GNDVI, (f) NDVI and SR, (g) NDVI and NIR/GRN, (h) GNDVI and SR, (i) GNDVI and NIR/GRN, (j) SR and NIR/GRN, (k) NDVI,  
GNDVI and SR, (l) NDVI, GNDVI and NIR/GRN, (m) NDVI, SR and NIR/GRN, (n) GNDVI, SR and NIR/GRN, (o) NDVI, GNDVI, SR and 
NIR/GRN. 
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sensing images is not only fundamental to applications of 
precision agriculture, but can also be very useful to food 
provisions management. 
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