African Journal of Bacteriology Research
Subscribe to JBR
Full Name*
Email Address*

Article Number - 47D681D46804


Vol.6(4), pp. 23-31 , August 2014
DOI: 10.5897/JBR2014.0128
ISSN: 2006-9871



Full Length Research Paper

Production of biosurfactants by bacteria isolated from a mine tailing zone in Southern Mexico and their resistance to heavy metals



Jeiry Toribio-Jiménez
  • Jeiry Toribio-Jiménez
  • Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar
Miguel Ángel Rodríguez-Barrera
  • Miguel Ángel Rodríguez-Barrera
  • Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar
Monserrat Valdez Lucena
  • Monserrat Valdez Lucena
  • Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar
Ashanti Barrera Flores
  • Ashanti Barrera Flores
  • Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar
Daniel Segura
  • Daniel Segura
  • Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
  • Google Scholar
Víctor Wilson-Corral
  • Víctor Wilson-Corral
  • Unidad Académica de Ingeniería, Universidad Autónoma de Sinaloa, Culiacan, México.
  • Google Scholar
Eugenia Flores Alfaro
  • Eugenia Flores Alfaro
  • Laboratorio de Investigaciones de Epidemiología clínica y Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar
Yanet Romero*
  • Yanet Romero*
  • Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
  • Google Scholar







 Received: 21 March 2014  Accepted: 01 August 2014  Published: 31 August 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Tailings generated through mining processes often create leachates containing high concentrations of heavy metals such as As, Fe, Mn, Zn and Pb. These high concentrations of heavy metals result in environ-mental damage such as contamination of soil, groundwater and air, which represents a huge problem for individuals living near mining areas. An alternative for soil metal removal is microbiological processes including the production of biosurfactants, possibly a survival mechanism for adverse conditions of mine tailings and leachates. Moreover, mine tailings are materials that have attracted interest among researchers, because they can be exploited by innovative techniques like phytomining. In this study, we sampled the leachates of the “El fraile” mine tailings and identified 103 bacteria capable of growth on these leachates. We observed that 11 bacteria produce a high amount of biosurfactants and developed the multi-metal tolerance with higher concentration gradient of Pb, Cd, Cu, Fe, Zn and As. We showed that the bacteria tolerate 853 nM of As and up to 12 nM of Pb, 17 nM of Cd, 10.6 nM of Cu, 22 nM of Fe and 10.5 nM of Zn. We determined that the bacterial isolates clustered within five phylogenetic groups that were very close: Enterobacter, Klebsiella, Artherobacter, Pantoea and Solibacillus groups. A bank of strains resistant to heavy metals and producers of biosurfactants was obtained for future studies on the mechanism of absorption or assimilation of heavy metals and light was shed on the alternative use of these bacteria in bioremediation of metal pollution.

 

Key words: Bacteria, metals, biosurfactants, mine tailings.

Andrews JM (2001). Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48:5-16.
Crossref
 
Armienta MA, Talavera O, Morton O, Barrera M (2003). Geochemistry of metals from mine tailings in Taxco, Mexico. Bull Environ. Contam. Toxicol. 71:387-393.
Crossref
 
Benson DA, Karsch-Mizrachi I (2000). GenBank. Nucleic. Acids. Res. 28:15-18.
Crossref
 
Bodour AA, Drees KP, Maier RM (2003). Distribution of biosurfactant producing bacteria in undisturbed and contaminated arid southwestern soils. Appl. Environ. Microbiol. 69:3280-3287.
Crossref
 
Das S, Patnaik S, Sahu H, Chakraborty A, Sudarshan M, Thatoi H (2013). Heavy metal contamination, physic-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans. Nonferrous. Met. Soc. China. 23:484-493.
Crossref
 
Dhakate R, Singh VS (2008). Heavy metal contamination in groundwater due to mining activities in Sukinda valley, Odisha -A case study. J. Geogr. Reg. Plann. 1(4):58-67.
 
Doni S, Macci C, Peruzzi E, Iannelli R, Ceccanti B, Masciandaro G (2013). Decontamination and functional reclamation of dredged brackish sediments. Biodegradation. 24:499-512.
Crossref
 
Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003). Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69:3223-3230.
Crossref
 
Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evol. 39:783-791.
Crossref
 
Gadd G (2004). Microbial influence on metal mobility and application for bioremediation. Geoderm. 122:109-119.
Crossref
 
Hall G, Puhlmann T (2004). Spatial distribution of iron oxidation in the aerobic cells of the Wheal Jane Pilot passive treatment Plant. Sci. Total. Environ. 338:73-80.
Crossref
 
Hall G, Swash P, Kotilainen S (2005). The importance of biological oxidation of iron in the aerobic cells of the Wheal Jane Pilot passive treatment system. Sci. Total. Environ. 338:41-51.
Crossref
 
Johnson D, Hallberg K (2004). Acid mine drainage: remediation options: a review. Sci. Total. Environ. 338:3-14.
Crossref
 
Jukes TH, Cantor CR (1969). Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism. Academic Press, New York. pp. 21-132
Crossref
 
Kamala-Kannan S, Krishnamoorthy R (2006). Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury – a case study in Pulicat Lake north of Chennai, south east India. Sci. Total. Environ. 367:341-353
Crossref
 
Kannan N (2002). Laboratory Manual in General Microbiology. New Delhi, India: Panima Publishing Incorporation.
 
Kavamura V, Esposito E (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotech. Advances. 28:61-69.
Crossref
 
Koc S, Kabatas B, Icgen B (2012). Multidrug and Heavy Metal-Resistant Raoultella planticola Isolated from Surface Water. Bull Environ. Contam. Toxicol. 91(2):177-183.
Crossref
 
Lawniczak L, Marecik R, Chrzanowski L (2013). Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 97:2327-2339.
Crossref
 
MacFaddin J (2000). Biochemical test for identification of medical bacteria. Lippincott Williams and Wilkins Ing. United States, 3a Editon.
 
Moldes AB, Paradelo R, Vecino X, Cruz JM, Gudi-a E, Rodríguez L, Teixeira JA, Domínguez JM, Barral MT (2013). Partial Characterization of Biosurfactant from Lactobacillus pentosusand Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. Biomed. Res. Int. 961842. 6p.
 
Moreno ME, Acosta-Saavedra LC, Meza-Figueroa D, Vera E, Cebrian ME, Ostrosky-Wegman P, Calderon-Aranda ES (2010). Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: A pilot study. Int. J. Hyg. Environ. Health. 213(4): 252-258.
Crossref
 
Mahjoubi M, Jaouani A, Guesmi A, Ben Amor S, Jouini A, Cherif H, Najjari A, Boudabous A, Koubaa A, Cherif A (2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnol. 30(6):723-33.
Crossref
 
Mulligan CN, Yong RN, Gibbs BF, James S, Bennett HPJ (1999). Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environ. Sci. Technol. 33:3812-3820.
Crossref
 
Ndip RN, Beeching EC, Ndip LM, Mbacham WF, Titanji VP (2007). Molecular characterization of pseudomonas aeruginosa recovered in the Buea health district of Cameroon: implication for nosocomial spread. West. Afr. J. Med. 26(3):191-195.
PMid:18399332
 
Pepper IL, Zerzghi HG, Bengson SA, Iker BC, Banerjee MJ, Brooks JP (2012). Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids. J. Appl. Microbiol. 113:569-577.
Crossref
 
Rodicio MR, Mendoza MC (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica. Enferm. Infecc. Microbiol. Clin. 22 (4):238-245.
Crossref
 
Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74:5463-5467.
Crossref
 
Seaker EM, Sopper WE (1988). Municipal sludge for minespoil reclamation: I. Effects on microbial populations and activity. J. Environ. Qual. 17:591-597.
Crossref
 
Sen R (2010). Biosurfactants. Springer Science Business Media; Landes Bioscience, New York, N.Y.; Austin, Tex.
 
Saitou N, Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Pubmed
 
Sevgi E, Coral G, Gizir A, Sagun M (2009). Investigation of heavy metal resistance in some bacterial strains isolated from industrial soil (J). Turk. J. Biol. 34:423-431.
 
Soberón-Chávez G, Maier RM (2011) Biosurfactants: a General Overview. Biosurfactants, Microbiol. Monogr. 20:1-11.
Crossref
 
Talavera O, Armienta MA, García J, Flores N (2006). Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco Guerrero, southern Mexico. Environ. Geochemis. Health. 28:243-255.
Crossref
 
Talavera O, Yta M, Moreno-Tovar R, Almazán A, Flores N, Duarte C (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofísica internacional. 44:49-64.
 
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6. Mol. Biol. Evol. 30:2725-2729.
Crossref
 
Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2011). Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst. Appl. Microbiol. 34(7):531-535.
Crossref
 
Umrania V (2006). Bioremediation of toxic heavy metal using acidothermophilic autotrophes. Bioresour. Technol. 97(10):1237-1242.
Crossref
 
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 73(16):5261-5267.
Crossref
 
Wang S, Mulligan C (2009). Rhamnolipids biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Proc. Biochem. 44:296-301.
Crossref
 
Whitehead PG, Prior H (2004). Bioremediation of acid mine drainage: an introductory overview of the Wheal Jane Wetlands project. Sci. Total. Environ. 338:15-21.
Crossref
 
Will M, Caro AD, Miller RM, Soberón-Chávez G (1997). Chemical behavior of the Wheal Jane bioremediation system Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. FEMS. Microbiol. Lett. 153:279-285.
Crossref
 
Zhang Y, Miller RM (2002). Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58:3276-3282.

 


APA Toribio-Jiménez, J., Rodríguez-Barrera, M. Á., Lucena, M. V., Flores, A. B., Segura, D., Wilson-Corral, V., Alfaro, E. F., & Romero, Y. (2014). Production of biosurfactants by bacteria isolated from a mine tailing zone in Southern Mexico and their resistance to heavy metals. African Journal of Bacteriology Research, 6(4), 23-31.
Chicago Jeiry Toribio-Jim&enez, Miguel &Angel Rodr&iguez-Barrera, Monserrat Valdez Lucena, Ashanti Barrera Flores, Daniel Segura, V&ictor Wilson-Corral, Eugenia Flores Alfaro and Yanet Romero. "Production of biosurfactants by bacteria isolated from a mine tailing zone in Southern Mexico and their resistance to heavy metals." African Journal of Bacteriology Research 6, no. 4 (2014): 23-31.
MLA Jeiry Toribio-Jimeacute;nez, et al. "Production of biosurfactants by bacteria isolated from a mine tailing zone in Southern Mexico and their resistance to heavy metals." African Journal of Bacteriology Research 6.4 (2014): 23-31.
   
DOI 10.5897/JBR2014.0128
URL http://www.academicjournals.org/journal/JBR/article-abstract/47D681D46804

Subscription Form