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Leguminous crops are key components of low input agricultural cropping systems, and play an 
important role in ensuring food security in many societies in Sub-Saharan Africa (SSA). However, 
legume crop productivity in SSA is frequently limited by mineral nutrient deficiencies (particularly 
phosphorus, P). A common remedy for P deficiency is the application of P-fertilizers or in the case of 
low input cropping systems the reliance on symbiotic relations between crops and beneficial soil 
bacteria (rhizobia) and fungi (mycorrhizas). More recently, identification of legume species and 
genotypes with high efficiencies of P uptake and P use has been the focus of improvement programs 
using conventional breeding techniques. Due to inherent time limitations in conventional breeding 
approaches, progress in improving legume P uptake and P use efficiencies has been slow. Advances in 
attaining this goal could be by integrating molecular tools with conventional improvement strategies. A 
consideration of molecular and physiological mechanisms underlying differences in P uptake and P use 
efficiencies can result in more precise targeting of genetic variation and improvement through marker-
assisted selection and other conventional techniques. This article discusses the potential for improving 
legume crop P uptake and P use efficiency in low-P, acid soils of SSA by integrating physiological and 
genomic tools, with conventional crop improvement in acid soils. 
 
Key words: Legume, phosphorus uptake, breeding, comparative genomics, crop improvement, Sub-Saharan 
Africa. 

 
 
INTRODUCTION 
 
Land degradation and soil fertility depletion are among 
the major causes of low agricultural productivity which in 
turn leads to food insecurity and natural resource 
destruction in many parts of Sub-Saharan Africa (SSA) 
(Sanchez, 2010). These factors have important economic 
and social implications, and are responsible for the gap 
between food production and population growth in SSA, 
as well as low productivity leading to poor nutrition and 
health. Therefore, a significant  investment  in  advanced 
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technologies that allow crop plants to adapt to inherent 
soil limitations to productivity as a complement to the 
conventional approach of adapting the production 
environment (soil) to meet crop requirements are needed 
to sustain and improve yields. This approach is 
particularly relevant in the smallholder cropping systems 
that dominate food production in SSA. Intercropping with 
legume crops is a key feature of these smallholder 
cropping systems, and legume crops play an important 
role not only in the overall productivity of these systems, 
but also in human health and nutrition (Kamanga et al., 
2010). 

Fabaceae (Legume family) is one of the most species- 
rich and economically  important  plant  families  because
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Figure 1. Market and consumption of grain legumes in the world. There are some grain legumes like cowpea that are produced uniquely in 
Africa.  

 
 
 
they are an important source of food, fodder, energy and 
cover crops. Some of the most important commercial 
legume species in SSA (Figure 1) include the common 
bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), 
soybeans (Glycine max), peas (Pisum sativum), 
groundnut (peanut, Arachis hypogaea), and alfalfa 
(Medicago sativa). Their ability to fix atmospheric 
nitrogen (N) makes them key components of low-input 
cropping systems as a sustainable approach for 
improving soil N status (Ghosh et al., 2006). In this 
regard, they are ideal crops in intercropping production 
systems. Legume seeds and foliage also constitute an 
inexpensive and, in some cases, the only source of high-
quality proteins in many low-income societies (Vance et 
al., 2000; Schneider, 2002; Xinshen et al., 2003). 

However, in most parts of SSA, and the tropics in 
general, low phosphorus (P) availability is a major 
constraint for legume crop establishment, nitrogen 
fixation, growth, and productivity (Hague et al., 1986; 
Sanchez et al., 1997; Bouhmouch et al., 2005; Sanchez, 
2010). Unlike N, which  some  crops  can  obtain  through 

symbiotic biological fixation, P must be supplied from 
mainly commercial fertilizers, plant and animal manures, 
industrial and domestic wastes, and soil parent materials 
(Brady and Weil, 2001; Havlin et al., 2005). Highly 
weathered acid soils that fix large quantities of P 
dominate arable lands in SSA (Table 1, Scherr, 1999), 
and include Aridisols (36.8%), Alfisols (21.0%), Ultisols 
and Oxisols (22.6%), Entisols (14.1%), while Inceptisols 
and Vertisols cover ca. 2.5 and 2.1%, respectively 
(Hague et al., 1986; Aubert and Tavernier, 1972). The 
widespread P deficiency in these soils is evidenced by 
the positive crop response to fertilizer P additions (Hague 
et al., 1986; Smit et al., 2009). However, in many 
instances, most of the applied P is rapidly fixed by Fe- 
and Al-oxides in these soils, or bound in sparingly soluble 
P pools not immediately for plant uptake (Sample et al., 
1980). Additionally, soil erosion and P removal in 
harvested crops also contribute to the P deficiency 
problem. Maintaining a sufficient supply of plant available 
P in arable lands is, therefore, a key prerequisite for 
optimal productivity and quality. 



 

 

144     Biotechnol. Mol. Biol. Rev. 
 
 
 

Table 1. Global estimates of soil degradation in agricultural land (from Scherr, 1999).  
 

Agricultural land (million hectares) 

Region 

Africa Asia 
South 

America 

Central 

America 

North 

America 
Europe Oceania World 

Total 187 536 142 38 236 287 49 1475 

Degraded 121 206 64 28 63 72 8 562 

Percent 65 38 45 74 26 25 16 38 
 

In Africa, highly weathered acid soils that fix large quantities of Phosphorus dominate arable lands. 
 
 
 

Low soil solubility and mobility of P, and high P sorption 
in soils make plant available P, usually as H2PO4

-
 or 

HPO4
2-

 orthophosphate ion (Marschner, 1995; Havlin et 
al., 2005) one of the major limitations to plant growth. In 
most arable soils, as well as in nutrient-poor grassland 
and forest soils, over 70% of phosphate is present in 
highly unavailable organic forms (Macklon et al., 1994) 
and only about 25% of the P applied in fertilizers in 
tropical soils is recovered by crops (Baligar and Bennett 
,1986). Because of low available P in many soils, plants 
have evolved a variety of P uptake and utilization 
strategies including: (1) formation of mycorrhizal 
associations between roots and symbiotic fungi to 
increase soil exploration and uptake of water and 
immobile nutrients, notably P, (2) increasing the length 
and density of root hairs to increase the effective 
absorptive area of roots, and reduce the diffusive 
pathway distance for P to reach the root surface, (3) 
modifications in root architecture and branching patterns 
to thoroughly explore the soil, (4) exudation of organic 
acids, H

+
 and phosphatases to solubilize and release 

organic and inorganic P from the soil, and (5) increasing 
the concentration of phosphate transporters in the root 
cell plasma membranes (Kochian, 2000; Lambers et al., 
1998; Marschner, 1995; Havlin et al., 2005). These varied 
mechanisms for increase P uptake by plants have led to 
genetic variation among species for P uptake and P use 
efficiency. Such variation presents a unique opportunity 
for breeding programs to further improve on these traits 
and thereby ensure sustainable productivity of many 
cropping systems in P-deficient soils. 

Farmers in SSA routinely incorporate legume crops in 
farming systems as an intercrop or in rotation to improve 
associated crop yields (Jemo et al., 2006; Wendt and 
Atemkeng, 2004; Niang et al., 2002). Until recently, little 
attention had been given to the P nutrition of legume 
crops despite the pivotal role that P plays in legume crop 
growth and productivity. In an intercrop study on low P 
soils including maize and Faba bean, Li et al. (2007) 
used permeable and impermeable root barriers to 
demonstrate that superior yields of intercropped maize 
compared to monocropping resulted from its uptake of P 
mobilized by acidification of the rhizosphere through 
Faba bean  root  release  of  organic  acids  and  protons. 

These enhancements in P nutrition seem to be greater 
when symbiotic associations between crop and microbes 
exist. For instance, Jemo et al. (2007) demonstrated that 
inoculation of Macuna (Macuna pruriens) with 
Bradyrhizobia and arbuscular mycorrhizal fungi on acid 
soils significantly increased P-uptake and P-use 
efficiency. Numerous recent studies have now confirmed 
that useful genetic variation for P uptake and P-use exists 
among various economically important legumes species. 
For instance, large genotypic differences P acquisition, P-
use efficiency and important traits for P uptake (root 
length and root hair densities) have recently been 
reported among cowpea genotypes (Krasilnikoff et al., 
2003; Saidou et al., 2007; Abaidoo et al., 2007). Similarly, 
genotpic differences in P acquisition and P-use efficiency 
have also been demonstrated among pigeonpea 
[Cajanus cajan (L.) Millsp.] genotypes, with short-duration 
genotypes accumulating more P, producing more total 
dry matter, and producing more dry matter per unit of 
absorbed P than the medium- and long-duration 
genotypes (Vesterager et al., 2006). These authors also 
reported positive correlations between P uptake and P-
use efficiency. These findings of considerable genetic 
variability in P uptake-efficiency among legume 
genotypes have made it possible for conventional legume 
improvement programs to select and breed for this 
important trait as a means to improve productivity. 
Modern molecular techniques such as marker-assisted 
selection (MAS) can greatly expedite this process and 
ultimately assist in narrowing the gap between food 
production and demand in SSA. 

Only recently, have researchers begun to use 
molecular genetics as a priority tool to enhance P uptake 
(Muchhal et al.,1996) with biochemical, physiological, and 
morphological plant response to P stress the subject of 
many recent reviews (Vance et al., 2003). This review 
presents opportunities, gaps and potentials of integrating 
molecular biological tools with traditional crop 
improvement efforts, to understand and exploit underlying 
genetic mechanisms of P-deficiency adaptation for food 
legume improvement in acid soils in SSA. We have 
therefore: (1) highlighted the importance of P in legume 
production, it’s deficiency, and strategies to improve 
availability in acid soils (2) elaborated on  the  importance 



 

 

 
 
 
 
of microbial P turnover in preventing P sorption and 
enhancing P availability in acid soils (3) surveyed the 
literature on molecular biological tools and materials 
important in breeding legumes for adaptation to low-P (4) 
presented a brief overview of plant biology research 
carried out on some model legumes [common bean (P. 
vulgaris L.), barrel medic (M. truncatula Gaertna) and 
white lupine (Lupinus albus)] with respect to P-stress 
adaptation and (5) concluded with a future outlook. This 
summary will enable legume plant breeders to use QTL 
markers in selecting and developing P-efficient legume 
plants, which would in turn, benefit low-input agricultural 
systems and enhance environmentally friendly cropping 
in intensively cultivated systems.  

 
 
PHOSPHORUS AVAILABILITY IN SSA SOILS 

 
A predominance of high activity Al and Fe in most SSA 
soils is a result of excessive weathering of basic cations 
(Ca and Mg) due to frequent heavy rainfall that usually 
exceeds evapotranspiration, with a resultant drop in soil 
pH commonly below 5.5. Among the trio of major plant 
nutrients, P is commonly the most limiting in these soils 
(Buehler et al., 2002), existing in inorganic and organic 
forms. Because of its particular chemistry, 
orthophosphate (HPO4

2-
, H2PO4

-
) which is the preferred 

inorganic form taken up by plants reacts readily and 
forms relatively low soluble, high energy bonds with 
positively charged Al and Fe at low pH and Ca at high pH 
(Kideok and Kubicki, 2004). Even when total soil P may 
be high, >80% still exists in unavailable forms to plants 
(Rengel and Marschner, 2005). Rhizosphere pH is further 
reduced when N-fixing legumes take up cations and 
excrete H

+
 from roots to maintain internal 

electroneutrality. Therefore since legume nodules are 
sinks for P with a concentration higher than that of other 
organs and require much ATP for nitrogenase functioning 
(Gniazdowska et al., 1998) different strategies have to be 
employed to enhance P uptake and use efficiency (Vance 
et al., 2003). 

 
 
PLANT STRATEGIES FOR IMPROVING P-
AVAILABILITY IN ACID SOILS  

 
A variety of adaptive strategies to improve P acquisition 
and use involve changes in root morphology and 
architecture (Yan et al., 2004; Beebe et al., 2006; Ochoa 
et al., 2006) root proliferation and elongation (Bates and 
Lynch, 2000) as well as changes in shoot and flower 
development (Bucciarelli et al., 2006). Some plants may 
excrete hydrogen ions (H

+
) to acidify the rhizosphere 

which could result from surplus uptake of nutrient cations 
or   rather, from  light  induced  photosynthesis  observed 
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with cowpea seedlings (Rao et al., 2002). Phosphorus-
stressed plants also tend to allocate a greater proportion 
of biomass to root dry matter compared to P-sufficient 
plants (López-Bucio et al., 2003). Some P-stressed 
plants exude organic acids (Wang et al., 2007) and 
phosphatase enzymes (Tomasi et al., 2008) into the 
rhizosphere, or produce cluster roots (Lynch and Brown, 
2001) enhance symbiotic relationships with soil 
organisms (Brundrett, 2002) such as vesicular-arbuscular 
mycorrhizas (VAM) (Kaeppler et al., 2000). But at what 
cost are root exudation and root development for 
example, to the overall yield of the legume crop? For 
inherently P deficient or P depleted soils, excretion of 
organic ions can significantly reduce plant yields costing 
up to 70% of the C source (Johnson et al., 1996a). 
Kuzyakov and Domanski (2000 and 2002) reported that 
of the total C allocated below-ground, 7 to 13% is 
ultimately found in roots, 2 to 5% exuded and 7 to 14% 
used up in root respiration for maintenance, root growth 
and ion uptake. This is an important consideration in 
selecting P adaptive traits because P stress and sugar 
signaling are related (Müller et al., 2007) whereby, a 
proportionate increase in the amount of sugars is 
translocated to roots (Hernández et al., 2007) despite 
reduced demand of photosynthate and higher sugar 
levels (Morcuende et al., 2007). 

 
 
MICROBIAL P TURNOVER 
 
Albeit methodological challenges for assessing microbial 
turnover of soil organic P, the importance of biological 
process in enhancing soil P availability to crops, in 
subsistence farming especially, is well documented 
(Tiessen and Shang, 1998; Buehler et al., 2002; Oberson 
and Joner, 2005; Steffens et al., 2009). For example, the 
incorporation of P into microbial cells prevents P sorption 
thereby maintaining it in easily mineralizeable form. Since 
food legumes supply large amounts of organic residues 
above and below ground, and organic matter boosts soil 
microbial activity, the microbiologically-driven processes 
in soil P dynamics are enhanced, and the microbial P 
pool increased in legume cropping systems. However, as 
more genes regulating arbuscular mycorrhizal fungi 
(AMF) and plant P uptake remain uncharacterized 
(Tesfaye et al., 2007), there is still a paucity of research 
findings to determine that myorrhization of legumes 
significantly contributes to P uptake. Yan et al. (2006) 
showed no variation in P uptake amongst mycorrhizal 
and non-mycorrhizal soybean genotypes. Howeveer, 
breeding legumes to establish symbiotic relationships 
with Rhizobia and AMF in low pH soils, for the purpose of 
enhancing P uptake in SSA, has the dual advantage of 
enhancing soil N fertility following the formation of N-
fixing root nodules of host plant roots. 

In acid soils, nodulation of a range of pasture  and  crop 
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legumes (e.g. subclover, lucerne, white clover, pea, 
cowpea, bean, etc.) is reduced, mainly because of 
sensitivity of early nodulation events, such as attachment, 
root hair curling and initiation of infection thread formation 
(Vlassak and Vanderleyden, 1997). Nod gene 
expression, more notable in acid-sensitive than in acid-
tolerant rhizobial strains, may account for these 
deleterious acidity-related effects (McKay and Djordjevic, 
1993). Several of the genetically identified symbiotic 
genes have been cloned (Geurts et al., 2005) facilitated 
by the development of model systems (Medicago and 
Lotus) for which efficient molecular tools became 
available. These genetic tools have facilitated the cloning 
of orthologous genes from pea and soybean (Kaló et al., 
2005). Improvements in the symbiotic relationship 
between rhizobia and legumes may be brought about by 
introducing the association of legume-rhizobia and plant 
growth-promoting rhizobacteria, legume-rhizobia and 
helper bacteria or legume-rhizobia and “arbuscular 
mycorrhizas” AM. Legume-AM symbiosis is an exquisite, 
highly regulated interaction between the legume host and 
AM, requiring coordinated expression of genes from two 
vastly different organisms. A complete review of AM 
symbiosis is beyond the scope of this paper, but can be 
referenced to several important and recent reviews 
(Kuster et al., 2007; Oldroyd et al., 2005). With advances 
in the development of molecular tools, genes responding 
to AM can be characterized, with the ultimate aim of 
identifying genetic strategies that regulate AM symbioses 
and P acquisition. 
 
 
MOLECULAR TOOLS AND PLANT BREEDING 
 
Conventional phenotypic selection for specific traits 
requires the evaluation of the trait from multiple 
environments over several years; this is often very 
expensive, time consuming, and labor intensive (Yuan et 
al., 2002). On the other hand, molecular marker 
technology is a powerful tool for selecting specific traits 
(Babu et al., 2003). Recently, a number of studies on 
quantitative trait loci (QTL) analysis relating root 
morphology and physiology to P nutrition in plants were 
reported (Beebe et al., 2006; Li et al., 2007; Chen et al., 
2009; Cichy et al., 2009; Li et al., 2009). The first QTL 
descriptive analysis began by relating P stress to root 
weight in field-grown maize (Reiter et al., 1991) and 
subsequently to root architecture traits such as root hair 
length, and lateral root branching and length (Zhu et al., 
2005a, b). Meanwhile, QTL analysis of root traits and P 
efficiency in legumes started much later. 

Quantitative trait loci mapping of yield and quality 
components, and the components of other physiologically 
or biochemically complex pathways, can provide crop 
breeders with a better understanding of the basis for 
genetic   correlations   between   economically   important 

 
 
 
 
traits (linkage and/or pleiotropic relationships between 
gene blocks controlling associated traits; for example, 
flowering time and biomass; inflorescence size and 
inflorescence number). This can facilitate more efficient 
incremental improvement of specific individual target 
traits like P-acquisition ability. It has been shown in maize 
and common beans, that the root architecture is closely 
related to the crop’s P-acquisition efficiency under 
various P levels (Lynch, 2001; Rubio et al., 2003; Zhu et 
al., 2005a, b). The studies with recombinant inbred lines 
(RILs) of maize and common beans identified QTLs 
affecting root development under P-stressed condition 
(Zhu et al., 2005; Beebe et al., 2006; Ochoa et al., 2006; 
Zhu et al., 2006). These findings provide a foundation for 
molecular marker development in breeding to develop 
new varieties with enhanced tolerance to P-stressed 
conditions. Therefore, RILs provide a powerful and useful 
genetic tool for mapping and marker development 
required for the selection of a new variety with the 
improved genetic traits of interest (Zhuang et al., 2002; 
Andaya and Mackill, 2003; Liu et al., 2008). The RILs are 
a population of homozygotes generated by a cross 
between two inbred parental lines followed by repeated 
selfing or crossing between progenies (Broman, 2005). 
Each RIL is a new inbred line and harbors a unique 
mosaic combination of two parental chromosomes which 
is a useful source for the genetic mapping (Broman , 
2005). 

Doubled Haploid (DH) technology allows breeders to 
generate a population of homozygous progenies in a 
single generation from heterozygous parents thus saving 
cost, and time needed for the generation of genetic 
materials for further analysis such as genetic mapping 
(Baenziger et al., 1989; Murigneux et al., 1993; Smith et 
al., 2008). The technology is often designed to segregate 
for several traits of importance at the same time and 
superior individuals from the populations progressed in 
breeding programs where developed markers can be 
applied directly. Double Haploidy lines can be generated 
either by anthers culture or by crossing with other species 
whose genomes are excluded from the embryos followed 
by chemical treatment to duplicate the haploid genome 
(Collins and Sadasivaiah, 1972; Devaux, 1988; Wan et 
al., 1989; Devaux et al., 1993; Thomas et al.,1997). This 
process results in a complete pair of homozygous 
genomes in each DH line in a single generation, which is 
not only more efficient but also reliable and predictable 
than conventional self producing segregating progeny 
(Choo et al., 1985; Bernardo, 2003; Bonnet et al., 2005; 
Smith et al., 2008). To accelerate variety breeding in 
order to meet consumer demands, the use of DH 
technology and molecular markers in practical breeding 
has been promoted for varied agronomic and end-use 
quality traits in several crops including barley, wheat, 
rapeseed, oat and rye (Manninen et al., 2004; Marwede 
et al., 2004; Tuvesson et al., 2007; Amar et al., 2008). 



 

 

 
 
 
 

Because the practical use of markers is not evident in 
all crops due to limited access to trait-linked markers, 
there is a global call for collaboration and technology 
transfer in the improvement of DH protocols in 
recalcitrant crops. 

The functional genomics approach such as 
transcriptomics and metabolomics provides opportunities 
to discover gene(s) whose expression level change 
against biotic and abiotic stress. The RNA interference 
(RNAi) approach that abolishes or reduces the 
expression level of a target gene at the RNA level is 
useful to identify the function of the identified target gene 
(Miki and Shimamoto, 2004; McGinnis et al., 2005; Li et 
al., 2006). Hernandez et al. (2007) investigated the 
changes of transcripts under the P stress condition and 
discovered genes whose expression levels are up- or 
down-regulated. The functionality of those genes for the 
P efficiency can be investigated by RNAi that adopts an 
intrinsic cellular surveillance system that protects an 
organism from the invasive or parasitic genetic materials 
such as virus and transposable elements Hannon, 2002). 
In addition, the functional genomics approach can be 
used to develop gene-specific molecular markers 
applicable to the selection of a new variety with improved 
P efficiency. 

As molecular genetics advances, a vast amount of 
molecular data will be available for breeders to 
incorporate into the conventional breeding program. The 
use of molecular genetic information together with MAS 
will improve the breeding program especially for the crop 
traits that are difficult to improve by conventional 
approach (Dekkers and Hospital, 2002). Furthermore, 
these molecular marker tools can also be used in ways 
that allow more effective discovery and exploitation of the 
evolutionary relationships between organisms, through 
comparative genomics (Devos et al., 2000). 

 
 
INFORMATION AND MATERIAL RESOURCES 

 
The completion of the Arabidopsis thaliana genome 
sequence in 2002 (Arabidopsis Genome Initiative, 2000) 
followed by progress on genome sequencing for rice in 
2002 (Yu et al., 2002) caused much excitement among 
researchers. These landmark efforts were followed by 
advances in characterization of genomes of other crops 
including corn (Zea mays L.), wheat (Triticum aestivum 
L.), soybean, and barril medic (Ware et al., 2002; Lunde 
et al., 2003; Young et al., 2003). There is therefore a rich 
library of research information that allows plant 
researchers to explore new paradigms to address 
fundamental and practical questions in a multidisciplinary 
manner. The new genetic tools for studying abiotic stress 
tolerance implored by the International Centre for 
Tropical Agriculture and the International Centre for 
Research in the Semi-Arid Tropics  present  opportunities 
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to identify and manipulate gene blocks contributing to 
within-species differences building on the examples of 
drought tolerance in bean (Broughton et al., 2003) and P-
acquisition ability (Kaeppler et al., 2000) in maize, 
respectively. The success (Figure 2) of these approaches 
requires (1) heritable genetic variation for the trait of 
interest (2) effective screening procedures for efficient 
detection of these genetic differences (at least once, and 
under conditions that ultimately are relevant to farmers’ 
fields in the breeding program’s target environment) (3) 
adequate levels of marker polymorphism, and (4) 
potential parents of mapping populations that differ in 
both the trait(s) of interest (in economically important 
levels) and in marker genotype (at least in the vicinity of 
gene blocks contributing to the traits of interest). In what 
follows, genetic variation for P-stress tolerance and 
effective screening procedures are further discussed. 
 
 

P-stress tolerance variability 
 

Abounding research has established an association of 
genetic variability for various traits with enhanced P-
acquisition ability albeit some circumstantial evidence 
(Kaeppler et al., 2000; Subbarao et al., 1997a, b; 
Wissuwa et al., 1998). Genotypic differences have been 
detected between pigeon pea cultivars for producing P 
solubilizing root exudates (Ishikawa et al., 2002; 
Subbarao et al., 1997a) and some between genotypes of 
groundnut and pigeon pea with apparent relative abilities 
to access and take up Fe- and/or Al-bound P (Subbarao 
et al., 1997a, b). Similarly, substantial genetic differences 
have been detected for root growth in chickpea (Ali et al., 
2002) and pearl millet (Krishna et al., 1985), as well as 
for both P-use efficiency (Bationo et al., 2002) and 
response to mycorrhizal colonization (Krishna et al., 
1985) in pearl millet. A reverse genetic tool, TILLING 
(Targeted Induced Local Lesions In Genomes), has been 
developed (Perry et al., 2003) that allows the 
identification of all alleles of a gene of interest from large 
ethylmethane sulfonate-mutagenized populations 
(McCallum et al., 2000). The identification of alleles with 
a weak or wild type-like phenotype can then be used, in 
addition to the knockout phenotype, to obtain insight into 
the function of a gene of interest. In some cases (e.g. 
Kaeppler et al., 2000; Wissuwa et al., 1998) QTLs 
associated with enhanced P uptake have already been 
mapped. 
 
 
Available and reliable screening procedures for 
accurate phenotyping 
 

There exist reliable screening procedures for P uptake in 
controlled conditions (Kaeppler et al., 2000; Subbarao et 
al., 1997a, b). Similarly, a system permitting rapid 
assessment of root volume  on  large  numbers  of  plants
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-Identify target legume and environments 

- Genomic tools 

- Bioinformatics 

- Molecular markers 

Selection of genetic resources in legume by P stress physiology 
(P-tolerant  and P-sensitive germplasm) 

 

Dissection of genetic variability by new genomics-based technology 

Responsive genes 

- Establish screening protocols and environments 
 

Improved maker system Selection of candidate genes through genetic transformation 

and functional/P stress analysis 

Legume breeding 

Phosphorus analysis for legume and Evironment 
(Phenotypic analyses by P stress physiology/agronomy) 

 
 
Figure 2. The top-down (phenotype to gene) approach for developing P- stress tolerance in food legumes. 
Research carried out on the physiology and agronomy of food legumes permits the analysis of P-stress and 
selection of promising genetic material. This research combined with genomic tools leads to subsequent 
identification of candidate genes for P-stress tolerance in food legume that can be exploited by legume 
breeders. 

 
 
 
under field conditions has been described (Van Beem et 
al.,1998) and evaluated for improving drought tolerance 
in maize (Mugo et al., 1999). Additional procedures that 
could be used in phenotypic characterization of factors 
contributing to genetic variation in P-acquisition exist. 
Among this set of procedures, it is evident that some can 
be   used   to  assess  genetic  variation  in  P-acquisition. 

Others may be relevant to the specific causes of non-
availability of P in a particular target environment, can be 
used on large enough numbers of mapping progenies, 
with high enough heritability, to  permit  QTL  detection  in 
mapping populations that are segregating for the trait and 
having adequate marker polymorphism, as has already 
been done  for  rice  (Wissuwa  et  al.,  1998)  and  maize 



 

 

 
 
 
 
(Kaeppler et al., 2000). 
 
 
MODEL LEGUME RESEARCH ON P-STRESS 
ADAPTATION 
 
Phosphorus stress studies on legumes have mainly 
focused on, common bean, white lupine, and to a lesser 
extent barrel medic, and soybean (G. max). In what 
follows, a brief review on plant biology research related to 
P-stress adaptation is presented for common bean, white 
lupine and barrel medic.  
 
 
Common bean P. vulgaris l 
 
Common bean, the most important food legume 
worldwide has information on genetic variability for the 
capacity to produce grain in low soil P conditions 
(Broughton et al., 2003; Ochoa et al., 2006). The genetics 
of inheritable traits conferring low soil P tolerance in bean 
has also been reported in Africa (Kimani et al., 2007). For 
promising genomics approaches, the ability to transform 
a crop is the preferred method for providing ‘‘proof of 
concept’’ (Meagher, 2002; Wang et al., 2003) since 
transformation allows confirmation of the function of 
candidate genes. For crops such as common bean, 
where a reliable transformation system is lacking, the 
‘proof of concept’’ approach cannot be applied directly, 
and testing has to be conducted in other species that 
have high transformation efficiencies. If tests are 
successful, the candidate gene(s) can be transferred 
using conventional breeding methods combined with 
MAS. 

An account of bean improvement from classical to 
molecular breeding for both abiotic and biotic stresses 
has been provided by Miklas et al. (2006). In addition, the 
QTL identification approach is now used to analyze P 
stress tolerance and adaptation in common bean and 
Arabidopsisis (Beebe et al., 2006; Ochoa et al., 2006). By 
employing the composite interval mapping approach, 
Beeble et al. (2006) used RILs from a cross between two 
bean genotypes with contrasting total P accumulation in 
low P conditions, to identify QTLs for P accumulation and 
associated root architectural traits in common bean. They 
found a total of 26 individual QTLs. The P accumulation 
QTLs often coincided with QTLs for basal root 
development, indicating that basal roots appear to be 
important in P acquisition. Similarly, Ochoa et al. (2006) 
generated RILs from a cross of two common bean 
accessions with contrasting root architecture traits for 
adventitious roots and identified 19 QTLs for adventitious 
root formation, screening 86 F5:7 RILs under P stress 
and P-sufficient conditions. Furthermore, QTL analysis 
applied to RIL of a cross of G19833 and DOR 364 
common beans showed that root hair formation  and  root 
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organic acid exudation are important traits for marker-
assisted selection and breeding of P stress tolerance and 
adaptation (Yan et al., 2004). Moreover, several 
thousand Expressed Sequence Tags (ESTs) derived 
from P-stressed common bean roots have been 
characterized (Ramírez et al., 2005) and a limited 
number (575) is registered in the NCBI database: 
http://www.ncbi.nlm.nih.gov/ dbEST. It is also worth 
mentioning that Hernàndez et al. (2007) have completed 
a P stress root transcriptome survey in common bean, 
identifying some 125 genes responsive to P stress. This 
information will go a long way to facilitate genetic 
improvement for low P adaptation in low-input agricultural 
systems. 
 
 
Barrel medic (M. truncatula) 
 
Bucciarelli et al. (2006) reported that barrel medic, a 
model legume for plant biology research responds to soil 
P deficiency by delaying (1) leaf development and leaf 
expansion along the main and axillary shoots; (2) axillary 
shoot emergence and elongation, resulting in stunted 
plants; and (3) timing and frequency of flower 
emergence. It was also observed that P-stressed barrel 
medic formed shorter petioles and shorter blade lengths 
relative to plants in P-sufficient conditions. These 
morphological changes require more supporting evidence 
to attribute overall delay in whole plant development as a 
P stress response. However, the plastic nature of plant 
morphological traits (Beebe et al., 2006; Ochoa et al., 
2006) coupled with the lack of a standardized approach 
to describe plant growth and phenotypic responses to P 
stress (Bucciarelli et al., 2006), makes result 
comparisons from different laboratories difficult. Changes 
in root architecture are often associated with plant 
adaptation to P stress. However, Bucciarelli et al. (2006) 
reported no root architecture differences between barrel 
medic plants grown under P-sufficient and P-deficient 
conditions until 28 days after planting, when lateral root 
length and number of P-limited plants showed a decline. 
On the contrary, alfalfa (M. sativa) roots show changes in 
architecture when grown under P stress. Genetic 
regulation of root architecture changes due to P stress 
within and among species is not fully understood and 
thus, offers a fruitful area of emphasis for future research. 
According to Tesfaye et al. (2007), the sequencing of the 
genomes of Medicago and lotus will soon be completed. 

Given the conserved synteny among legume genomes, 
using positional cloning, it should be possible to identify 
specific genes that contribute to QTLs affecting 
adaptation to P stress in Medicago. Phytochromes have 
also been proven to play a role in legume adaptation to P 
stress. It is noteworthy that barrel medic, bean and lupine 
plants exposed to P stress have increased density and 
length of root hairs. Some 40 genes are suggested  to  be 
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involved in root hair development (Grierson et al. 2001). 
Amongst these, a key gene, 1-aminocyclopropane-1-
carboxylic acid oxidase, in ethylene biosynthesis is over 
represented in the ESTs derived from P-stressed roots of 
Medicago, lupine and bean (Graham et al., 2006). This 
indicates that ethylene production and/or plant 
responsiveness to ethylene plays a role in root adaptation 
to P deficiency. 
 
 

White lupine (Lupinus albus) 
 
White lupine is a non-mycorrhizal species that adapts to 
P deficient soil. Lupine displays a highly synchronous 
suite of molecular and biochemical adaptations to P 
stress by developing proteoid (cluster) roots, increasing 
organic acid exudation, and enhancing the expression of 
many genes, such as secreted acid phosphatase 
(LaSAP1) and Pi transporters LaPT1 (Uhde-Stone et al., 
2003a, b; Vance et al., 2003,). A recent bioinformatic 
analysis of legume gene indices (Medicago, Glycine, 
Phaseolus, and Lupinus) queried for genes 
overrepresented in P-stressed tissue revealed the 
annotation of several putative transcription factor genes, 
including WRKY, MYB, and zinc finger family of genes 
(Graham et al., 2006). In addition, leaves and root tissues 
showed non-overlapping sets of transcription factor 
genes (Wu et al., 2003). Tesfaye et al. (2007) have also 
observed the PHR1 imperfect palindromic consensus 
sequence motif within the 5’ upstream region of many P 
stress-induced genes, including the white lupine LaPT1 
and LaSAP1 (Liu et al., 2001; Müller et al., 2007). Also 
noteworthy is that contigs encoding orthologs of PHR1 
occur in the common bean, barrel medic, and soybean 
gene indices. Auxin (principally indole-3-acetic acid) has 
been implicated in the regulation of many aspects of plant 
growth and root development, including P stress-induced 
proteoid (cluster) root development (Gilbert et al., 2000). 
More so, exogenous application of auxin to P-sufficient 
white lupine mimics proteoid cluster root formation as 
seen under P-deficient conditions (Gilbert et al. 2000). 
Auxin transport inhibitors added to P-deficient plants 
dramatically reduced the formation of cluster roots. 
Phosphorus deficiency stress is also known to stimulate 
ethylene production in lupine and other plant species 
(Gilbert et al. 2000), and Arabidopsis (Ma et al., 2003). 
Stimulation of ethylene production results in an increase 
in root hair density and length (Grierson et al., 2001; 
López-Bucio et al., 2003) characteristic of lupine plants 
exposed to P stress. These results strongly suggest that 
cluster root development in response to P deficiency in 
white lupine is controlled by auxin and ethylene 
availability. The role of cytokinins in root growth and P 
deficiency stress is not resolved. In P-stressed lupine 
proteoid roots, CKX gene expression showed a 3- to 5-
fold increase in expression (Vance et al., 2003). 
Moreover,   application  of  cytokinin  to  P-deficient  white 

 
 
 
 
lupine inhibits proteoid root formation, and kinetin content 
is increased in proteoid roots (Neumann et al., 2000). 
Aloni et al. (2006) have proposed a mechanism for lateral 
root initiation in P-sufficient plants that involves the 
interaction of auxin, cytokinin, and ethylene. They 
propose that factors that modulate root tip cytokinin 
production allow ethylene and auxin to increase at lateral 
root initiation sites, giving rise to new laterals. 
 
 
CONCLUSION 
 
Legume contribution of soil nutrients in cropping systems 
is known as well as legume production constraints 
especially in acid soils where Al toxicity and P deficiency 
are common. With the availability of a wide array of 
genomic and bioinformatic research platforms, P stress 
research is advancing toward an exciting phase geared 
towards signal transduction, regulation of developmental 
plasticity, gene function, and increased efficiency of use. 
Information from the literature indicates that for some 
food legumes, genetic variation and molecular tools 
already exist that can permit plant breeders to enhance 
the P-acquisition component of efficiency in low-nutrient 
environments. Where not yet already in place, these 
genetic tools can be expected to become available in the 
very near future. To promote sustainable agriculture, 
plant breeders are expected to identify mechanisms in 
plants that improve P acquisition and exploit these P 
stress adaptations to produce plants that rely on low 
energy consumption, and are efficient in acquiring and 
utilizing soil P. Most importantly, comparative genomics 
utilizing the integrated information from different plants is 
expected to provide a common language to aid 
knowledge transfer among different species, knowing 
well that improving soil P availability in legumes 
enhances the practice of economical and environmentally 
friendly agriculture. 
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