African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - E40690563286


Vol.11(11), pp. 450-457 , March 2017
DOI: 10.5897/AJMR2016-8387
ISSN: 1996-0808



Full Length Research Paper

Combined efficacy of thymol and silver nanoparticles against Staphylococcus aureus



Sarah M. Abdelhamid
  • Sarah M. Abdelhamid
  • Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Gomhoreya St., Damanhour 22516, Egypt.
  • Google Scholar
Lobna S. El-Hosseiny
  • Lobna S. El-Hosseiny
  • Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 El Horreya Avenue, P. O. Box 832 El-Shatby, Alexandria 21526, Egypt.
  • Google Scholar







 Received: 20 November 2016  Accepted: 27 February 2017  Published: 21 March 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Due to the looming spread of resistance to classical antimicrobial agents, innovative therapeutic methods are in dire need to combat the onslaught of resistant bacterial pathogens. This study examines the antimicrobial efficacy of a phytochemical and a metallic nanoparticle against the top Gram positive resistant pathogen. The potential synergy of these two agents was also evaluated. The antibacterial activity of thymol and silver nanoparticles were tested individually using disc diffusion technique. The extent of synergy of their combination was evaluated using the checkerboard assay. Twenty clinical isolates of Staphylococcus aureus characterized as methicillin resistant or methicillin sensitive Staphylococcus aureus were utilized and the extent of synergism was calculated from fractional inhibitory concentration indices. Thymol exhibited an antistaphylococcal activity regardless of whether the isolates were phenotypically resistant or sensitive to methicillin. Combining thymol with silver nanoparticles resulted in at least additive or synergistic effect for all the examined strains and methicillin resistant strains were inhibited in the combinatorial assays to a greater extent comparative to when silver nanoparticles or thymol were used singly.  

 

Key words: Silver nanoparticles, thymol, Staphylococcus aureus, synergy, fractional inhibitory concentration index.

Bassetti M, Ginocchio F, Mikulska M (2011). New treatment options against Gram-negative organisms. Crit. Care 15(2): 215.
Crossref

 

CLSI-Clinical and Laboratory Standards Institute (2015). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 3rd ed. CLSI document M31-A3. Clinical and Laboratory Standards.

 
 

Dorman HJ, Deans SG (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2):308-316.
Crossref

 
 

Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1):103-109
Crossref

 
 

Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856-8874.
Crossref

 
 

Friedman M, Henika PR, Mandrell RE (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65(10):1545-1560.
Crossref

 
 

Hamilton-Miller JM, Shah S, Smith C (1993). Silver sulphadiazine: a comprehensive in vitro reassessment. Chemotherapy 39(6):405-409.
Crossref

 
 

Hamoud R, Zimmermann S, Reichling JJ, Wink M (2014). Synergistic interactions in two- drug and three-drug combinations (thymol, EDTA and vancomycin) against multi-drug resistant bacteria including E. coli. Phytomedicine 21(4):443-447.
Crossref

 
 

Hsieh MH, Yu CM, Yu VL, Chow JW (1993). Synergy assessed by checkerboard a critical analysis. Diagn. Microbiol. Infect. Dis. 16(4):343-349.
Crossref

 
 

Hwang I, Hwang JH, Choi H, Kim KJ, Lee DG (2012). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61:1719-1726.
Crossref

 
 

Jevons MP (1961). "Celbenin" - resistant Staphylococci. Br. Med. J. 1(5219):124-125.
Crossref

 
 

Kaur DC, Chate SS (2015). Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 7(2):78-84.
Crossref

 
 

Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91(3):453-462.
Crossref

 
 

Lara HH, Ayala-Nuňez NV, Ixtepan Turrent LC, Padilla CR (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26(4):615-621.
Crossref

 
 

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12(4):527-534.
Crossref

 
 

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3):268-281.
Crossref

 
 

Manzoor-ul-Haq VR, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015). Dried Mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci. Nanotechnol. 5(1):1-8.

 
 

Meletiadis J, Pournaras S, Roilides E, Walsh TJ (2010). Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumi. Antimicrob. Agents Chemother. 54(2):602-609.
Crossref

 
 

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346-2353.
Crossref

 
 

Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995). Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface- enhanced resonance Raman scattering. Langmuir 11(10):3712-3720.
Crossref

 
 

Murphy M, Ting K, Zhang X, Soo C, Zheng Z (2015). Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J. Nanomater. 2015:1-12.
Crossref

 
 

Naqvi SZH, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, Ali N (2013). Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 8:3187-3195.
Crossref

 
 

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451-1474.
Crossref

 
 

Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, Sudano Ruccaro A, Alonzo A (2004). Susceptibility of methicillin-resistant Staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett. 230(2):191-195.
Crossref

 
 

Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56:519-523.
Crossref

 
 

Ovington LG (2004). The truth about silver. Ostomy Wound Manage. 50(9A Suppl):1S-0S.

 
 

Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizْrova N, Sharma VK, Nevecna T, Zboril R (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 110(33):16248-16253.
Crossref

 
 

Panacek A, Smékalová M, Kilianová M, Prucek R, Bogdanová K, Večeřová R, Kolář M, Havrdová M, Płaza GA, Chojniak J, Zbořil R, Kvítek L (2015). Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules 21(1):26.
Crossref

 
 

Paranagama PA, Abeysekera KH, Abeywickrama K, Nugaliyadde L (2003). Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice. Lett. Appl. Microbiol. 37(1):86-90.
Crossref

 
 

Paredes D, Ortiz C, Torres R (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Nanomed. 9:1717-1729.

 
 

Petersen PJ, Labthavikul P, Jones CH, Bradford PA (2006). In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by checkerboard and time-kill kinetic analysis. J. Antimicrob. Chemother. 57(3):573-576.
Crossref

 
 

Rai M, Yadav A, Gade A (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1):76-83.
Crossref

 
 

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2010). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):1-9.

 
 

Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumhar A, Bellare J, Chopade BA (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 8:4277-4289.

 
 

Spellberg B, Miller LG, Kuo MN, Bradley J, Scheld WM, Edwards JE (2007). Societal costs versus savings from wild-card patent extension legislation to spur critically needed antibiotic development. Infection 35(3):167-174.
Crossref

 
 

Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JMT, Taylor PW (2004). Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents 23(5):462-467.
Crossref

 
 

Turina AV, Nolan MV, Zygadlo JA, Perillo MA (2006). Natural terpenes: self-assembly and membrane partitioning. Biophys. Chem. 122(2):101-113.
Crossref

 
 

Ug A, Ceylan O (2003). Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Arch. Med. Res. 34(2):130-136.
Crossref

 
 

Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and - negative bacteria. J. Appl. Microbiol. 94(2):240-247.
Crossref

 
 

WHO-World Health Organization (2014). Antimicrobial resistance: global report on surveillance. 8.

 
 

Wiegand I, Hilpert K, Hancock REW (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3(2):163-175.
Crossref

 
 

Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 47(3):174-179.
Crossref

 
 

Yap PSX, Yiap BC, Ping HC, Lim SHE (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 8:6-14.
Crossref

 

 


APA Abdelhamid, S. M. & El-Hosseiny, L. S. (2017). Combined efficacy of thymol and silver nanoparticles against Staphylococcus aureus. African Journal of Microbiology Research, 11(11), 450-457.
Chicago Sarah M. Abdelhamid and Lobna S. El-Hosseiny. "Combined efficacy of thymol and silver nanoparticles against Staphylococcus aureus." African Journal of Microbiology Research 11, no. 11 (2017): 450-457.
MLA Sarah M. Abdelhamid and Lobna S. El-Hosseiny. "Combined efficacy of thymol and silver nanoparticles against Staphylococcus aureus." African Journal of Microbiology Research 11.11 (2017): 450-457.
   
DOI 10.5897/AJMR2016-8387
URL http://www.academicjournals.org/journal/AJMR/article-abstract/E40690563286

Subscription Form