African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - C1039F564705


Vol.11(22), pp. 955-964 , June 2017
DOI: 10.5897/AJMR2017.8566
ISSN: 1996-0808



Full Length Research Paper

Aspergillus niger LMM01: A new source of glucose oxidase in Amazon



Diego Rayan T. Sousa
  • Diego Rayan T. Sousa
  • Rede de Biodiversidade e Biotecnologia da Amazônia – PPGBIONORTE – Universidade Federal do Amazonas, Av. General Rodrigo Octávio 6200, 69077-000, Manaus, Amazonas, Brasil.
  • Google Scholar
Elusiane S. Santos
  • Elusiane S. Santos
  • Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia - INPA. Av. André Araújo 2936, 69080-97, Manaus, Amazonas, Brasil.
  • Google Scholar
Ana Claudia A. Cortez
  • Ana Claudia A. Cortez
  • Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia - INPA. Av. André Araújo 2936, 69080-97, Manaus, Amazonas, Brasil.
  • Google Scholar
Joao Vicente B. Souza
  • Joao Vicente B. Souza
  • Rede de Biodiversidade e Biotecnologia da Amazônia – PPGBIONORTE – Universidade Federal do Amazonas, Av. General Rodrigo Octávio 6200, 69077-000, Manaus, Amazonas, Brasil.
  • Google Scholar







 Received: 20 April 2017  Accepted: 25 May 2017  Published: 14 June 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Glucose oxidase (GOx) has several industrial applications. It is believed that there are several species of fungi that have the ability to produce this enzyme, most of which are unexplored. This work aimed to investigate the production of glucose oxidase (EC 1.1.3.4) by fungi isolated from soil samples of the Amazonian forest. Filamentous fungi were isolated from soil samples from the Adolpho Ducke Forest Reserve, located in Manaus, Amazonas. Strains were subjected to submerged bioprocessing to select for the best GOx producers. Those selected for the production of isolated enzymes were subjected to kinetic tests that evaluated production of the enzyme and consumption of the biomass substrate by the isolates. In addition, experiments to evaluate the optimal carbon, nitrogen and phosphorus sources as well as the influence of the bioprocess factors were carried out. Finally, GOx production was investigated in a semi-continuous system for 7 days. The most frequent isolates isolated from soil samples belonged to the genera Aspergillus, Penicillium and Trichoderma. Aspergillus niger LMM01 was the best GOx producer. Glucose, peptone and KH2PO4 were demonstrated to be the optimal carbon, nitrogen and phosphorus sources, respectively. Multivariate experiments demonstrated that the parameters with the greatest effect on GOx production were pH and agitation. Stable expression results for GOx (7.74 U/ml) were obtained over 7 days in a semi-continuous process. In this context, the new Amazonian source of this enzyme (A. niger LMM01), and enzyme production in a semi-continuous process, demonstrates the importance of the present work.

 

Key words: Amazon, fungi, production, glucose oxidase.

Aber S, Mahmoudikia E, Karimi A, Mahdizadeh F (2016). Immobilization of Glucose Oxidase on Fe3O4 Magnetic Nanoparticles and its Application in the Removal of Acid Yellow 12. Water Air Soil Pollut. 227(3):1-11.
Crossref

 

Ahmad I, Islam ZU, Yu Z, Javed MM (2014). Propagation of Aspergillus niger in Stirred Fermentor for the Production of Glucose Oxidase. J. Pure Appl. Microbiol. 8(2):1735-1742.

 
 

Amiri A, Shahedi M, Kadivar M, Aber S, Mahmoudikia E, Karimi A, Grossmann M (2016). Evaluation of physicochemical properties of gluten modified by Glucose oxidase and Xylanase. J. Cereal Sci.
Crossref

 
 

Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009b). Glucose oxidase-an overview. Biotechnol. Adv. 27(4):489-501.
Crossref

 
 

Bankar SB, Bule, MV, Singhal, RS, Ananthanarayan, L (2009a). Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food Bioprocess Technol. 2(4):344-352.
Crossref

 
 

Bhat SV, Swathi BR, Rosy M, Govindappa, M (2013). Isolation and charecterization of Glucose Oxidase (GOD) from Aspergillus flavus and Penicillium sp. Int. J. Curr. Microbiol. Appl. Sci. 2(6):153-161.

 
 

Bridge P, Spooner B. (2001). Soil fungi: diversity and detection. Plant Soil 232(1-2):147-154.
Crossref

 
 

Celestino JR, Carvalho LE, Lima AM, Ogusku MM, Souza JVB (2014). Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem. 49(4):569-575.
Crossref

 
 

Choi JM, Han SS, Kim HS. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 33(7):1443-1454.
Crossref

 
 

Cicatiello P, Gravagnuolo AM, Gnavi G, Varese GC, Giardina P (2016). Marine fungi as source of new hydrophobins. Int. J. Biol. Macromol. 92:1229-1233.
Crossref

 
 

Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM, Peralta RM. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. J. Ind. Microbiol. Biotechnol. 41(10):1467-1478.
Crossref

 
 

Debbab A, Aly AH, Proksch P (2012). Endophytes and associated marine derived fungiecological and chemical perspectives. Fungal Divers. 57(1):45-83.
Crossref

 
 

Devasenathipathy R, Mani V, Chen SM, Huang ST, Huang TT, Lin CM, Chen BJ (2015). Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb. Technol. 78:40-45.
Crossref

 
 

Fapyane D, Poulsen CH, Ferapontova EE (2016). Bioelectrocatalytic oxidation of glucose by hexose oxidase directly wired to graphite. Electrochem. Commun. 65:1-4.
Crossref

 
 

Farid MA, Ghoneimy EA, El-Khawaga MA, Negm-Eldein A, Awad GEA (2012). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Ann. Microbiol. 63(2):523-531.
Crossref

 
 

Ferri S, Kojima K, Sode K (2011). Review of Glucose Oxidases and Glucose Dehydrogenases. J. Diabetes Sci. Technol. 5(5):1068-1076.
Crossref

 
 

Fiedurek J, Gromada A (2000). Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. J. Appl. Microbiol. 89(1):85-89.
Crossref

 
 

Gao Z, Li Z, Zhang Y (2012). High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol. Lett. 34(3):507-514.
Crossref

 
 

Gomes E, Souza SR, Grandi RP, Silva RD (2005). Production of thermostable glucoamylase by newly isolated Aspergillus flavus a 1.1 and Thermomyces lanuginosus a 13.37. Braz. J. Microbiol. 36:75-82.
Crossref

 
 

Gu L, Zhang J, Liu B, Du G, Chen J (2015). High-level extracellular production of glucose oxidase by recombinant Pichia pastoris using a combined strategy. Appl. Biochem. Biotechnol. 175(3):1429-1447.
Crossref

 
 

Hamed SAM (2013). In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int. Biodeterior. Biodegradation 78:98-102.
Crossref

 
 

Haq IU, Nawaz A, Mukhtar H, Ahmed W (2014). Isolation and Identification of Glucose Oxidase Hyper Producing Strain of Aspergillus niger. Br. Microbiol. Res. J. 4(2):195-205.
Crossref

 
 

Hatzinikolaou DG, Macris BJ (1995). Factors regulating production of glucose oxidase by Aspergillus niger. ‎Enzyme Microb. Technol. 17(6): 530-534.
Crossref

 
 

Hayashi A, Crombie A, Lacey E, Richardson A, Vuong D, Piggott A, Hallegraeff G (2016). Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates. Mar. Drugs 14(3):59.
Crossref

 
 

Hwa K (2015). Immobilization of Glucose Oxidase on Gold Surface for Applications in Implantable Biosensors. J. Med. Bioeng. 4(4):297-301.
Crossref

 
 

Iqbal J, Utara U (2015). Isolation of Aspergillus niger Strains from Soil and their Screening and Optimization for Enhanced Citric Acid Production using Cane Molasses as Carbon Source. J. Appl. Environ. Biol. Sci. 5(4):128-137.

 
 

Khan I, Qayyum S, Ahmed S, Niaz Z, Fatima N, Chi ZM (2016). Molecular cloning and sequence analysis of a PVGOX gene encoding glucose oxidase in Penicillium viticola F1 strain and it's expression quantitation. Gene 592(2):291-302.
Crossref

 
 

Khurshid S, Kashmiri MA, Quershi Z, Ahmad W (2011). Optimization of glucose oxidase production by Aspergillus niger. Afr. J. Biotechnol. 10(9):1674-1678.

 
 

Kona R P, Qureshi N, Pai JS (2001). Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresour. Technol. 78(2):123-126.
Crossref

 
 

Konishi T, Aoshima T, Mizuhashi F, Choi SSH, Roberts A (2013). Safety evaluation of glucose oxidase from Penicillium chrysogenum. Regul. Toxicol. Pharmacol. 66(1):13-23.
Crossref

 
 

Lin Y, Hu L, Yin L, Guo L (2015). Electrochemical glucose biosensor with improved performance based on the use of glucose oxidase and Prussian Blue incorporated into a thin film of self-polymerized dopamine. Sens. Actuators B Chem. 210:513-518.
Crossref

 
 

Liu D, Yang J, Wang H, Wang Z, Huang X, Wang Z, Chen X (2014). Glucose Oxidase-Catalyzed Growth of Gold Nanoparticles Enables Quantitative Detection of Attomolar Cancer Biomarkers. Anal. Chem. 86(12):5800-5806.
Crossref

 
 

Liu JZ, Weng LP, Zhang QL, Xu H, Ji LN (2003). Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J. Microbiol. Biotechnol. 19(3):317-323.
Crossref

 
 

Lu T, Peng X, Yang H, Ji L (1996). The production of glucose oxidase using the waste myceliums of Aspergillus niger and the effects of metal ions on the activity of glucose oxidase. Enzyme Microb. Technol. 229(96):339-342.

 
 

Mendes MMGS, Pereira SA, Oliveira RL, Silva LAO, Albuquerque PM (2015). Screening of Amazon fungi for the production of hydrolytic enzymes. Afr. J. Microbiol. Res. 9(10):741-748.
Crossref

 
 

Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3):426-428.
Crossref

 
 

Mirhendi H, Zarei F, Motamedi M, Nouripour-Sisakht S (2016). Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation. J. Mycol. Med. 26(1):9-16.
Crossref

 
 

Oliveira LG, Cavalcanti MAQ, Fernandes MJS, Lima DMM (2013). Diversity of filamentous fungi isolated from the soil in the semiarid area, Pernambuco, Brazil. J. Arid Environ. 95:49-54.
Crossref

 
 

Oliveira MMC, Marinho BM, Benassi, VM (2016). XII Seminário Brasileiro de Tecnologia Enzimática ENZITEC 2016:2014–2017.

 
 

Orlandelli RC, Alberto RN, Almeida TT, Azevedo JL, Pamphile JA (2012). In vitro Antibacterial Activity of Crude Extracts Produced by Endophytic Fungi Isolated from Piper hispidum Sw. J. Appl. Pharm. Sci. 2 (10):137-141.
Crossref

 
 

Pereira SA, Oliveira RL, Duvoisin Jr S, Silva LADO, Albuquerque PM (2016). The use of Amazon fungus (Trametes sp.) in the production of cellulase and xylanase. Afr. J. Biotechnol. 15(20):843-853.
Crossref

 
 

Pinheiro EAA, Carvalho JM, Dos Santos DCP, Feitosa AO, Marinho PSB, Guilhon G MSP, Marinho AMR (2013). Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An. Acad. Bras. Cienc. 85(4):1247-1252.
Crossref

 
 

Qiu Z, Guo Y, Bao X, Hao J, Sun G, Peng B, Bi W (2016). Expression of Aspergillus niger glucose oxidase in yeast Pichia pastoris SMD1168. Biotechnol. Biotechnol. Equip. 30(5):998-1005.
Crossref

 
 

Röcker J, Schmitt M, Pasch L, Ebert K, Grossmann M (2016). The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 210:660-670.
Crossref

 
 

Rogalski J, Fiedurek J, Szczordrak J, Kapusta K, Leonowicz A (1988). Optimization of glucose oxidase synthesis in submerged cultures of Aspergillus niger G-13 mutant. Enzyme Microb. Technol. 10(8):508-511.
Crossref

 
 

Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Strobel SA (2011). Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol. 77(17):6076-6084.
Crossref

 
 

Santos YVS, Freire DA, Pinheiro S, Fontão L, Souza JVB, Cavallazzi JRP (2015). Production of laccase from a white rot fungi isolated from the Amazon forest for oxidation of Remazol Brilliant Blue-R. Sci. Res. Essays 10(4):132-136.
Crossref

 
 

Sapountzi E, Braiek M, Vocanson F, Chateaux JF, Jaffrezic-Renault N, Lagarde F (2017). Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens. Actuators B Chem. 238:392-401.
Crossref

 
 

Sessegolo T, Tochetto C, Zanette RA, Schafer A, Alves SH, Monteiro SG, Santurio J M (2011). Fungal microbiota in drinking water and domestic sewage. Semin: Ciênc. Agrár. 32(1):301-306.
Crossref

 
 

Singh J, Verma N (2013). Glucose oxidase from Aspergillus niger : Production, characterization and immobilization for glucose oxidation. Adv. Appl. Sci. Res. 4(3):250-257.

 
 

Sondhia S, Rajput S, Varma RK, Kumar A (2016). Biodegradation of the herbicide penoxsulam (triazolopyrimidine sulphonamide) by fungal strains of Aspergillus in soil. Appl. Soil Ecol. 105:196-206.
Crossref

 
 

Sonjak S, Frisvad JC, Gunde-Cimerman N (2006). Penicillium mycobiota in Arctic subglacial ice. Microb. Ecol. 52(2):207-216.
Crossref

 
 

Sonjak S, Uršič V, Frisvad JC, Gunde-Cimerman N (2007). Penicillium svalbardense, a new species from Arctic glacial ice. Antonie van Leeuwenhoek 92(1):43-51.
Crossref

 
 

Subramani R, Kumar R, Prasad P, Aalbersberg W (2013). Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac. J. Trop. Biomed. 3(4):291-296.
Crossref

 
 

Talbert JN, He F, Seto K, Nugen SR, Goddard JM (2014). Modification of glucose oxidase for the development of biocatalytic solvent inks. Enzyme Microb. Technol. 55:21-25.
Crossref

 
 

Turkmen E, Bas SZ, Gulce H, Yildiz S (2014). Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochim. Acta 123:93-102.
Crossref

 
 

Vingataramin L, Frost EH (2015). A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques 58(3):120-125.
Crossref

 
 

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, Academic Press. 18(1):315-322.

 
 

Wong CM, Wong KH, Chen XD (2008). Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 78(6):927-938.
Crossref

 
 

Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY (2016). Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic). Microb. Ecol. 71(3):543-554.
Crossref

 
 

Zhang Z, Liu JL, Lan JY, Duan CJ, Ma QS, Feng JX (2014). Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol. Biofuels 7(1):107.
Crossref

 
 

Zhou M, Zhou K, He P, Wang KM, Zhu RZ, Wang YD, Hu QF (2016). Antiviral and Cytotoxic Isocoumarin Derivatives from an Endophytic Fungus Aspergillus oryzae. Planta Med. 82(5):414-417.
Crossref

 

 


APA Sousa, D. R. T., Santos, E. S., Cortez, A. C. A., & Souza, J. V. B. (2017). Aspergillus niger LMM01: A new source of glucose oxidase in Amazon. African Journal of Microbiology Research, 11(22), 955-964.
Chicago Diego Rayan T. Sousa, Elusiane S. Santos, Ana Cl&audia A. Cortez and  João Vicente B. Souza,. "Aspergillus niger LMM01: A new source of glucose oxidase in Amazon." African Journal of Microbiology Research 11, no. 22 (2017): 955-964.
MLA Diego Rayan T. Sousa, et al. "Aspergillus niger LMM01: A new source of glucose oxidase in Amazon." African Journal of Microbiology Research 11.22 (2017): 955-964.
   
DOI 10.5897/AJMR2017.8566
URL http://www.academicjournals.org/journal/AJMR/article-abstract/C1039F564705

Subscription Form