African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - A9A831266842


Vol.11(44), pp. 1586-1599 , November 2017
DOI: 10.5897/AJMR2017.8725
ISSN: 1996-0808



Full Length Research Paper

A novel groel gene from the endosymbiont of beet leafhopper, Candidatus Sulcia muelleri



Tesneem Nusayr
  • Tesneem Nusayr
  • Molecular Biology Program, New Mexico State University, P. O. Box 30001, MSC 3MLS, Las Cruces, NM, 88003, New Mexico.
  • Google Scholar
Rebecca Creamer
  • Rebecca Creamer
  • Molecular Biology Program, New Mexico State University, P. O. Box 30001, MSC 3MLS, Las Cruces, NM, 88003, New Mexico.
  • Google Scholar







 Received: 04 October 2017  Accepted: 08 November 2017  Published: 28 November 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Curtoviruses are transmitted by the beet leafhopper Circulifer tenellus, in a circulative (non-propagative) manner. Curtoviruses are phloem-limited and are acquired by the vector during feeding. Sap-feeding insects harbor endosymbionts which can help provide essential nutrients required for the insects’ survival. Candidatus Sulcia muelleri is an endosymbiont present in the beet leafhopper identified during this study. A housekeeping gene, groel, was identified from the endosymbiont. The groel gene sequence from this strain of Ca. S. muelleri differs from all other strains published in NCBI, suggesting the presence of a new strain, which was named S. muelleri beet leafhopper (SMBLH). A GroEL-homolog protein produced from groel was found in different vectors with circulative transmission. Analysis of nucleotide and translated sequences, using alignment, phylogenetic trees, and predicted secondary and tertiary structures showed that SMBLH GroHp has similarities to Escherichia coli GroEL and the GroEL-homolog proteins from Hamiltonella and Buchnera, endosymbionts of whiteflies and aphids, respectively. GroHp and GroEL were expressed as fusion proteins. Electron microscopy analyses indicate that purified expressed GroHp and GroEL proteins demonstrate correct folding.

Key words: Beet leafhopper (BLH), Candidatus Sulcia muelleri, endosymionts, GroEL homolog protein (GroHp).

Baliji S, Black MC, French R, Stenger DC, Sunter G (2004) Spinach curly top virus: A newly described Curtovirus species from southwest Texas with incongruent gene phgylogenies. Phytopathology 94(7):772-779.
Crossref

 

Baumann P (2005). Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Ann. Rev. Microbiol. 59:155-189.
Crossref

 
 

Baumann P, Baumann L, Clark MA (1996). Levels of Buchnera aphidicola chaperoninGroEL during growth of the aphid Schizaphis graminum. Curr. Microbiol. 320:279-285.
Crossref

 
 

Bouvaine S, Boonham N, Douglas AE (2011). Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J. Gen. Virol. 92:1467-1474.
Crossref

 
 

Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachmiak A, Horwich AL, Sigler PB (1994) The crystal-structure of the bacterial chaperonin GroEL at 2.8 Angstrom. Nature. 371:578-586.
Crossref

 
 

Dereeper A, Audic S, Claverie JM, Blanc G (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 12:10-18.
Crossref

 
 

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:465-469.
Crossref

 
 

Douglas AE (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38-47.
Crossref

 
 

Edelbaum D, Gorovits R, Sasaki S, Ikegami M, Czosnek H (2009). Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to Tomato yellow leaf curl virus and Cucumber mosaic virus, but not to Grapevine virus A or Tobacco mosaicvirus. Arch. Virol. 154:399-407.
Crossref

 
 

Fenton WA, Kashi Y, Furtak K, and Horwich AL (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614-619.
Crossref

 
 

Gonella E, Negri I, Marzorati, M, Mandrioli M, Sacchi, L, Pajoro M, Crotti E, Rizzi A, Clementi E, Tedeschi R, Bandi C, Alma A, Daffonchio D (2011). Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois Noir in Vitis vinifera. Appl. Environ. Microbiol. 4(77):1423-1435.
Crossref

 
 

Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Czosnek H, Vavre F, Fleury F, Ghanim M (2010). The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 84 (18):9310-9317.
Crossref

 
 

Hogenhout SA, El-Desouky A, Whitefield AE, Redinbaugh MG (2008). Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327-359.
Crossref

 
 

Hogenhout SA, van der Wilk F, Verbeek M, Goldback RW, van den Heuvel JF JM (2000). Identifying the determinants in the equatorial domain of Buchnera GroEL implicated in binding Potato Leafroll Virus Potato leafroll virus. J. Virol. 74(10): 4541-4548.
Crossref

 
 

Hogenhout SA, van der Wilk F, Verbeek M, Goldback RW, van den Heuvel JF JM (1998). Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J. Virol. 72(1):358-365.

 
 

Hogenhout SA, Verbeek M, Hans F, Houterman PM, Fortass N, van der Wilk F, Huttinga, H, van den Heuvel, JF JM (1996) Molecular bases of the interactions between luteoviruses and aphids. Agronomie. 16:167-173.
Crossref

 
 

Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013). Diversity of Bacterial Endosymbionts Associated with Macrosteles Leafhoppers Vectoring Phytopathogenic Phytoplasmas. Appl. Environ. Microbiol. 79(16):5013-5022.
Crossref

 
 

Ishikawa H (1982) Host symbiont interactions in the protein-synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochem. 12(6): 613-622.
Crossref

 
 

Kono M, Koga R, Shimada M, Fukatsu T (2008). Infection Dynamics of Coexisting Beta- and Gammaproteobacteria in the Nested Endosymbiotic System of Mealybugs. Appl. Environ. Microbiol. 74(13):4175-4184.
Crossref

 
 

Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008). The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manage. Sci. 64:789-792.
Crossref

 
 

Kumari P, Mahapatro GK, Banerjee N, Sarin NB (2015). Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgen. Res. 24:859-873.
Crossref

 
 

Kupper M, Gupta SK, Feldhaar H,Gross R (2014). Versatile roles of the chaperonin GroEL in microorganism–insect interactions. FEMS Microbiol. Lett. 353:1-10.
Crossref

 
 

Montllor CA, Maxmen A, Pircell AH (2002). Facultative bacterial endosymbionts benefits pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27:189-195.
Crossref

 
 

Moran NA (2007). Symbiosis as an adaptive process and source of phenotypic complexity. PNAS 104(suppl 1):8627-8633.
Crossref

 
 

Moran NA, Tran P, Gerardo NM (2005). Symbiosis and insect diversification: an ancient symbiont of Sap feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71(12):8802-8810.
Crossref

 
 

Morin S, Ghanim M, Sobol I, Czosnek, H (2000). The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast-two-hybrid system. Virology 276:404-416.
Crossref

 
 

Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel J (1999). A GroEL homologue from endosymbiotic bateria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256:75-84.
Crossref

 
 

Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47:217-225.
Crossref

 
 

Oliver KM, Degnan PH, Burke GR, Moran NA (2010). Facultative symbionts in aphids and horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55:247-266.
Crossref

 
 

Oliver KM, Russell JA, Moran NA, Hunte MS (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100(4):1803-1807.
Crossref

 
 

Rana VS, Singh ST, Priya NG, Kumar J, Rajagopal R (2012) Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary glands of whitefly B. tabaci. PLoS ONE 7:1-13.
Crossref

 
 

Shokal U, Yadav S, Atri J, Accetta, Kenny E, Banks K, Katakam, Jaenike J, Elftherianos I (2016). Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol. 16:1-16.
Crossref

 
 

Skjaerven L, Cuellar J, Martinez A, Valpuesta JM (2015). Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett. 583:2522-2532.
Crossref

 
 

Su Q, Pan H, Liu B, Chu D, Xie W, Wang S, Xu B, Zhang Y (2013).Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Nature Sci. Rep. 3(1367):1-6.
Crossref

 
 

van den Heuvel JF JM, Bruyere A, Hogenhout SA, Ziegler-Graff V, Brault V, Verbeek M, van der Wilk F, Richards K (1997) The N-terminal region of the luteovirus read through domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71(10):7258-7265.

 
 

van den Heuvel JF JM, Verbeek M, van der Wilk F (1994). Endosymbiotic bacteria associated with circulative transmission of Potato leafroll virus by Myzus persicae. J. Gen. Virol. 75:2559-2565.
Crossref

 
 

von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001). Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433-436.
Crossref

 
 

Wangkeeree J, Thomas AM, Hanboonsonga Y (2012). Candidates for symbiotic control of sugarcane white leaf disease. Appl. Environ. Microbiol. 78(19):6804-6811.
Crossref

 

 


APA Nusayr, T., & Creamer, R. (2017). A novel groel gene from the endosymbiont of beet leafhopper, Candidatus Sulcia muelleri. African Journal of Microbiology Research, 11(44), 1586-1599.
Chicago Tesneem Nusayr and Rebecca Creamer,. "A novel groel gene from the endosymbiont of beet leafhopper, Candidatus Sulcia muelleri." African Journal of Microbiology Research 11, no. 44 (2017): 1586-1599.
MLA Tesneem Nusayr and Rebecca Creamer,. "A novel groel gene from the endosymbiont of beet leafhopper, Candidatus Sulcia muelleri." African Journal of Microbiology Research 11.44 (2017): 1586-1599.
   
DOI 10.5897/AJMR2017.8725
URL http://www.academicjournals.org/journal/AJMR/article-abstract/A9A831266842

Subscription Form