African Journal of Environmental Science and Technology
Subscribe to AJEST
Full Name*
Email Address*

Article Number - F2E344366053


Vol.11(10), pp. 532-543 , October 2017
DOI: 10.5897/AJEST2016.2252
ISSN: 1996-0786



Full Length Research Paper

Evidence for a gas-flaring source of alkanes leading to elevated ozone in air above West Africa



O. G. Fawole
  • O. G. Fawole
  • School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK.
  • Google Scholar
X. Cai
  • X. Cai
  • School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK.
  • Google Scholar
A. R. MacKenzie
  • A. R. MacKenzie
  • School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK.
  • Google Scholar







 Accepted: 29 March 2016  Published: 31 October 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


As part of the African Monsoon Multidisciplinary Analysis (AMMA) project, the FAAM BAe-146 research aircraft sampled the lower and mid-troposphere around the West Africa sub-region. Back trajectory analysis of the air parcels sampled on-board during the entire duration of the flights showed the history and fate of the air parcels. Data from flights B228 and B231 showed strongly enhanced carbon monoxide (CO) and ozone levels attributable to emissions of anthropogenic origin from the city of Lagos and gas flaring activities in the Nigeria oil fields. The elevated levels of ozone and CO observed at about 6 km above the sea-level on flight B231 were attributed to long-range transport of biomass burning plume from the East, around Sudan. The strongly enhanced mixing ratios of short-chained alkanes and CO (> 400 ppbv) observed from measurements on flights B228 and B231 are indicative of natural gas/combustion sources. Flight B222 sampled air parcels strongly impacted by emissions from Lagos but not from the Nigeria oil field and measured relatively lower mixing ratios of ozone, CO and short-chained alkanes species. Results from this study strongly suggests gas flaring emissions in the Niger Delta area to be a prominent contributor to the enhanced levels of short-chained alkane species observed in Lagos metropolis, especially during the West Africa Monsoon (WAM) months and, hence, a significant source of atmospheric aerosol in the sub-region.

Key words: African Monsoon Multidisciplinary Analysis (AMMA), gas flaring, West Africa Monsoon, alkanes, ozone, Niger Delta.

Anejionu OC, Blackburn GA, Whyatt JD (2015a). Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data. Remote Sens. Environ.158:81-94.
Crossref

 

Anejionu OC, Whyatt JD, Blackburn GA, Price CS (2015b). Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation. Atmos. Environ. 118:184-193.
Crossref

 
 

Carslaw D (2015). The openair manual–open-source tools for analysing air pollution data. Manual for version 1.1-4, King's College, London.

 
 

Carslaw DC, Ropkins K (2012). Openair—an R package for air quality data analysis. Environ. Model. Softw. 27:52-61.
Crossref

 
 

De Gouw J, Cooper O, Warneke C, Hudson P, Fehsenfeld F, Holloway J, Hübler G, Nicks D, Nowak J, Parrish D (2004). Chemical composition of air masses transported from Asia to the US West Coast during ITCT 2K2: Fossil fuel combustion versus biomass‐burning signatures. J. Geophys. Res. Atmos. 109(D23).
Crossref

 
 

Elvidge CD, Zhizhin M, Baugh K, Hsu FC, Ghosh T (2015). Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies, 9(1):14.
Crossref

 
 

Fawole O, Cai XM, MacKenzie A (2016). Gas flaring and resultant air pollution: A review focusing on Black Carbon. Environ. Pollut. 216:182-197.
Crossref

 
 

Gilman J, Lerner B, Kuster W, De Gouw J (2013). Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado. Environ. Sci.Technol. 47(3):1297-1305.
Crossref

 
 

Hopkins JR, Evans MJ, Lee JD, Lewis AC, Marsham JH, McQuaid J, Parker DJ, Stewart DJ, Reeves CE, Purvis RM (2009). Direct estimates of emissions from the megacity of Lagos. Atmos. Chem. Phys. 9(21):8471-8477.
Crossref

 
 

Ite AE, Ibok UJ (2013). Gas Flaring and Venting Associated with Petroleum Exploration and Production in the Nigeria's Niger Delta. Am. J. Environ. Protect. 1(4):70-77.
Crossref

 
 

Janicot S, Thorncroft CD, Ali A, Asencio N, Berry GJ, Bock O, Bourles B, Caniaux G, Chauvin F, Deme A (2008). Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006, Ann. Geophys. pp. 2569-2595.
Crossref

 
 

Johnson MR, Coderre AR (2012). Compositions and greenhouse gas emission factors of flared and vented gas in the Western Canadian Sedimentary Basin. J. Air Waste Manag. Assoc. 62(9):992-1002.
Crossref

 
 

Lebel T, Parker DJ, Flamant C, Bourlès B, Marticoréna B, Mougin E, Peugeot C, Diedhiou A, Haywood J, Ngamini JB (2010). The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region. Quart. J. Royal Meteorol. Soc. 136(S1):8-33.
Crossref

 
 

Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008). Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 42(25):6247-6260.
Crossref

 
 

Mari CH, Reeves CE, Law KS, Ancellet G, Andrés‐Hernández MD, Barret B, Bechara J, Borbon A, Bouarar I, Cairo F (2011). Atmospheric composition of West Africa: highlights from the AMMA international program. Atmos. Sci. Lett. 12(1):13-18.
Crossref

 
 

McQuaid JB, Lewis AC, Bartle KD, Walton SJ (1998). Sub-ppt atmospheric measurements using PTV-GC-FID and real-time digital signal processing. J. High Resolut. Chromatogr. 21(3):181-184.
Crossref

 
 

Methven J (1997). Offline trajectories: Calculation and accuracy. UGAMP.

 
 

Methven J, Evans M, Simmonds P, Spain G (2001). Estimating relationships between air mass origin and chemical composition. J. Geophys. Res. Atmos. 106(D5):5005-5019.
Crossref

 
 

Minga A, Thouret V, Saunois M, Delon C, Serça D, Mari C, Sauvage B, Mariscal A, Leriche M, Cros B (2010). What caused extreme ozone concentrations over Cotonou in December 2005? Atmos. Chem. Phys. 10(3):895-907.
Crossref

 
 

Noone D, Simmonds I (1999). A three-dimensional spherical trajectory algorithm. In: H. Ritchie (Editor), Research Activities in Atmospheric and Oceanic Modelling, Report No. 28, WMO/TD-No. 942. World meteorological Organization, Geneva, pp. 26-27.

 
 

OPEC (2015). OPEC annual statistical bulletin, Organisation of Petroleum Exporting Countries, Austria.

 
 

Osuji LC, Onojake CM (2004). Trace Heavy Metals Associated with Crude Oil: A Case Study of Ebocha‐8 Oil‐Spill‐Polluted Site in Niger Delta, Nigeria. Chem. Biodivers. 1(11):1708-1715.
Crossref

 
 

Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006). African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Am. Meteorol. Soc. 87(12):1739-1746.
Crossref

 
 

Reeves C, Formenti P, Afif C, Ancellet G, Attié JL, Bechara J, Borbon A, Cairo F, Coe H, Crumeyrolle S (2010). Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA. Atmos. Chem. Phys. 10(16):7575-7601.
Crossref

 
 

Sanchez M, Karnae S, John K (2008). Source characterization of volatile organic compounds affecting the air quality in a coastal urban area of South Texas. Int. J. Environ. Res. Public Health 5(3):130-138.
Crossref

 
 

Sauvage B, Thouret V, Cammas JP, Gheusi F, Athier G, Nédélec P (2005). Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data. Atmos. Chem. Phys. 5(2):335.
Crossref

 
 

Seila RL, Lonneman WA, Meeks SA (1989). Determination of C2 to C12 ambient air hydrocarbons in 39 US cities from 1984 through 1986, Computer Sciences Corp., Research Triangle Park, NC (USA).

 
 

Seinfeld JH, Pandis SN (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.

 
 

Sultan B, Janicot S (2003). The West African monsoon dynamics. Part II: The "preonset" and "onset" of the summer monsoon. J. Clim. 16(21):3407-3427.
Crossref

 
 

USEPA (2012). Report to congress on Black Carbon. EPA-450/R-12-001, United States Environmental Protection Agency, Research Triangle Park, NC.

 
 

Weyant CL, Shepson PB, Subramanian R, Cambaliza MO, Heimburger A, McCabe D, Baum E, Stirm BH, Bond TC (2016). Black carbon emissions from associated natural gas flaring. Environ. Sci. Technol. 50(4):2075-2081.
Crossref

 
 

WMO (2015). The climate in Africa: 2013, World Meteorological Organization, Switzerland (WMO-No. 1147).

 

 


APA Fawole, O. G., Cai, X., & MacKenzie, A. R. (2017). Evidence for a gas-flaring source of alkanes leading to elevated ozone in air above West Africa. African Journal of Environmental Science and Technology , 11(10), 532-543.
Chicago O. G. Fawole, X. Cai and A. R. MacKenzie,. "Evidence for a gas-flaring source of alkanes leading to elevated ozone in air above West Africa." African Journal of Environmental Science and Technology 11, no. 10 (2017): 532-543.
MLA O. G. Fawole, et al. "Evidence for a gas-flaring source of alkanes leading to elevated ozone in air above West Africa." African Journal of Environmental Science and Technology 11.10 (2017): 532-543.
   
DOI 10.5897/AJEST2016.2252
URL http://www.academicjournals.org/journal/AJEST/article-abstract/F2E344366053

Subscription Form