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Tukey’s chart uses a single observation to monitor the process mean, and it is suitable for monitoring of 
destructive testing data. Tukey’s chart adopts symmetrical control limits to monitor process and it is 
insensitive to signal mean shifts when the monitoring variable follows a skew distribution. This study 
proposes Tukey’s chart with asymmetrical control limits (ACL-Tukey’s chart) to monitor process mean. A 
statistical measurement performed with ACL-Tukey’s chart, improves successfully, the ability in 
signaling shifts for monitoring of right-skew and left-skew populations. A real case of IC packaging is 
given to illustrate the practice procedure of ACL-Tukey’s chart and indicates that ACL-Tukey’s chart is 
suitable to monitor the industrial process. 
 
Key words: Tukey’s control chart, destructive testing, skew distribution, IC packaging process, statistical 
process control. 

 
 
INTRODUCTION 
 
Statistical process control (SPC) is the application of 
statistical methods to the monitoring and control of a 
process to ensure that it operates at its full potential to 
produce conforming product. The technology of control 
chart is a key tool in SPC. When an assignable cause 
occurs, the process will change. The control chart detects 
process changes and sends the operators to discover the 
assignable cause. 

Currently, there are many types of control charts; when 
the control chart is applied to control process, the 
selection of an appropriate control charts must consider 
several factors such as sampling methods and monitoring 
procedures, etc. Many electronics manufacturers utilize a 
destructive testing approach to measure the process 
observations. After destructive testing and inspection, the 
testing sample is destroyed and cannot be sold on the 
market. Generally, for this kind of process monitoring, only 
one sample is taken to measure the observation so as to 
reduce cost. In this way, individual control charts are 
suitable to monitor the destructive testing data. 

Tukey’s chart uses a single observation to monitor the 
process mean (Alemi, 2004; Torng and Lee, 2008; Torng 
et al., 2009), thus making it suitable for monitoring 
destructive testing data. Tukey’s chart has the advantage 
of easy and simple control limits setup, therefore, it can be  

adopted easily in real industry. Normal population is 
always a basic assumption of control charts, therefore, 
most control charts adopt symmetrical control limits to 
control the process. However, in real industry, process 
observation may violate this assumption and follows a 
skew distribution. Torng and Lee (2008) had presented 
that the performance of Tukey’s chart is similar to 
Shewhart chart under both normality and non-normality. 

The occurrence of an assignable cause may result in 
the positive or negative shift of the process mean. The 
performances of a control chart in detecting both positive 
and negative mean shifts are the same for symmetrical 
distributions, but it may be negative for skew distributions. 
If a control chart employs a sample of size larger than 30 
to monitor process, the sample distribution will be 
approximately normal based on central limit theorem 
without respect to the symmetrical or skew population. 
However, when the sample size n = 1 is employed on 
control charts, the central limit theorem is not adopted, 
and then, the sample taken from the skew population 
cannot follow a symmetrical distribution. It causes the 
performances of the Tukey’s chart to be different in the 
signaling of positive and negative shift. 

The skew distribution can be divided to left-skew and 
right-skew distributions. Torng and Lee (2008) presented  



  

 
 
 
 
the performance of Tukey’s chart in detecting positive 
shifts for right-skew populations but ignored to measure 
the performance in detecting negative shifts. This study 
measured the ability of Tukey’s chart in detecting negative 
shifts for right-skew populations and discovered that the 
Tukey’s chart is seriously insensitive to detect as further 
discussed. If the destructive testing data is the 
larger-the-better characteristic and follows a right-skew 
distribution, Tukey’s chart can not detect quickly the 
negative shift of mean, and then, high defective rate may 
result. In addition, Torng and Lee (2008) also ignored to 
measure the performance for left-skew populations, and 
this performance should also be evaluated. 

For controlling of skew population, a control chart with 
asymmetrical control limits can improve the ability in 
detecting shifts (Lin and Chou, 2007). This study will 
develop Tukey’s chart with asymmetrical control limits to 
control right-skew and left-skew populations. A com- 
parative study will be provided to show the performance of 
Tukey’s chart with asymmetrical control limits in detecting 
both positive and negative shifts for controlling of skew 
population. 

Wire bonding is a key process in IC packaging. For wire 
bonding process, the gold ball shear strength is an 
important quality characteristic and must be monitored. 
The inspection of gold ball shear strength adopts the 
destructive testing approach, therefore, this study will 
apply Tukey’s chart to monitor gold ball shear strength 
testing value for performance evaluation. This case will be 
used to evaluate the feasibility that Tukey’s chart with 
asymmetrical control limits applies on monitoring of skew 
population. 
 
 
TUKEY’S CONTROL CHART 
 
Alemi (2004) proposed the control procedure of Tukey’s 
control chart which is a single observed value control 
chart and applies the principle of Box plot to set up its 
control limits. Torng and Lee (2008) constructed the 
control limits of Tukey’s control chart under considering a 
known population. The control limits of Tukey’s control 
chart are: 
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Where UCL and LCL are upper and lower control limits, 
respectively; ( )•−1F  is an inverse of cumulative 
distribution function (cdf) of a known probability 
distribution; IQR is Inter-Quartile Range that 
is ( ) ( )25.075.0 11 −− − FF ; k is a control limit coefficient 
which determines the width of control limits. Tukey’s 
control chart in Torng and Lee (2008) used symmetrical 
control limits to control process, therefore, this study calls  
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it Tukey’s chart with symmetrical control limits 
(SCL-Tukey’s chart). 

Assume the process mean and variance start �0 and �2, 
respectively, when process mean shifts, the new process 
mean becomes �1=�0+��, where � is the shift size 
coefficient, �=(�1-�0)/�. Let x be the sample observation, 
P(�) be the probability that an observation falls outside 
control limits for a specific �, f(x) be the probability density 
function (pdf) of population, and then P(�) is: 
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Average run length (ARL) was widely used to measure 
the performance of control charts (Acosta-Mejia and 
Pignatiello, 2010; Dasa et al., 2009; Weiß, 2011; Knoth, 
2005, 2006). ARL is defined as the expected value of the 
number of samples taken from the start of the process to 
the time when the chart indicates an out-of-control signal. 
The in-control ARL is used to measure the false alarm rate, 
and the out-of-control ARL represents the shift detecting 
ability of control chart. The ARL of Tukey’s control chart 
for a specific � is: 
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TUKEY’S CONTROL CHART WITH ASYMMETRICAL 
CONTROL LIMITS 
 
To extend the design of Tukey’s control chart earlier 
mentioned, this study proposes Tukey’s control chart with 
asymmetrical control limits (ACL-Tukey’s chart) to monitor 
skew population. Let kU and kL be the upper and lower 
control limit coefficients, and the upper and lower control 
limits of the Tukey’s control chart can be rewritten thus: 
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The ARL and P(�) of ACL-Tukey’s chart can be obtained 
by the application of Equations (2) and (3). The 
occurrence of the shift process in real industry cannot be 
anticipated, it is very difficult to predict the shift sizes of 
process mean, therefore, it is very important that a control 
chart has good performance to detect the overall shift 
sizes rather than a specific mean shift. Average ARL 
(AARL) is very stable to be the performance index when 
the shift size is uncertain, and it was cited by Wu et al. 
(2004) and Ryu et al. (2010). AARL for shift range 
[ ]ττ ,−  is: 
 

( )� ( ) δδδτ
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Where ( )δw  is the weight of ARL(�). A small AARL 
value indicates the chart has good performance to signal 
the process variation. This study defines ( ) 2δδ =w . 
 
The control limit coefficients, kU and kL, must be 
determined before ACL-Tukey’s chart is applied to 
process control. This study constructs a design model to 
optimize the control limit coefficients, kU and kL. The 
standard Shewhart’s control charts were widely used to 
control process and their performance is as a criterion to 
measure the improving rate of performance of new control 
charts. The false alarm rate of a standard Shewhart’s 
chart is about 370.4, therefore, an in-control ARL value of 
370.4 is always used to be a common norm for comparing 
the performance (Balakrishnan et al., 2010; Torng and 
Lee, 2008). The constraint of this model limits in-control 
ARL to be 370.4, and its objective is to minimize the AARL. 
Therefore, this design model is: 
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Let kL be equal kU, the ACL-Tukey’s chart becomes 
SCL-Tukey’s chart. 
 
Matlab optimization toolbox applies a nonlinear 
constrained optimization algorithm for solving of nonlinear 
models. De Magalhães et al. (2001), Mahadik and Shirke 
(2009), Lee (2010) and Torng and Lee (2009) had used 
Matlab optimization toolbox to determine the parameters 
of control charts. The performance indicators ARL and 
AARL will be coded with Matlab R2007a, and optimization 
toolbox is then applied to solve the control limit 
coefficients, kU and kL. 
 
 
A COMPARATIVE STUDY 
 
Selection of the skew population 
 
The skew population can be divided into two types; 
left-skew and right-skew. Gamma distribution as a 
right-skew distribution, denoted by G (a,b), was always 
used to examine the performance of control charts. Torng 
and Lee (2008) presented the performance of 
SCL-Tukey’s chart under several gamma distribution 
assumptions. Weibull distribution, denoted by W (�, �), 
can also become left-skew or right-skew type with the 
change of its shape parameter. Let observation x follow a 
weibull distribution, and its pdf is: 
 

( )
�
�
�

�

�
�
	



��
�



��
�

�−��
�



��
�

�=
− ββ

ηηη
β xx

xf exp
1

0,0,0 >>∞≤≤ ηβx                   

                                          (7) 

 
 
 
 
Where � is a scale parameter; � is a shape parameter. If 0  
< � < 3, weibull distribution is right-skew type; weibull 
distribution of 3 � � � 4 is approximate for the symmetrical 
distribution, and when � > 4, weibull distribution will 
become left-skew type. The expected value and variance 
of weibull distribution presented thus:  
 

( ) ( )βη 11+Γ=XE ,                          (8)                
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This study selects gamma and weibull distributions to 
examine the performance of control charts. The 
parameter choice of gamma distribution refers Torng and 
Lee (2008), and they are G (4,1), G (2,1) and G (1,1). For 
weibull distribution, this study chooses � = 10, 5, 3.5, 2, 
0.8 and a fixed � = 1 to measure performance. Both W 
(10,1) and W (5,1) are left-skew distributions, W (3.5,1) is 
approximately a symmetrical distribution and W (2,1) and 
W (0.8,1) are right-skew distributions. Figure 1 shows the 
weibull distributions that were selected and their 
corresponding normal distributions that have the same 
mean and standard deviation. 
 
 
COMPARISON AND DISCUSSION 
 
A comparative study is conducted to evaluate the 
performance of both ACL-Tukey’s and SCL-Tukey’s 
charts. The false alarm rate of each chart is set to be 
equal, such that the comparison can be conducted in 
terms of the out-of-control ARL and AARL. The shifts of 
δ  = -3, -2, -1.5, -1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1, 
1.5, 2 and 3 are chosen to obtain the out-of-control ARL 
and AARL values, so the � of the design model is set at 3. 
The ARL and AARL calculations have been expressed in 
earlier discussion.  

Let SCL mean the SCL-Tukey’s chart and ACL indicate 
ACL-Tukey’s chart. Table 1 provides the optimal design 
parameters of both SCL and ACL performances for each 
population. The in-control ARL values of all control charts 
are the same. For right-skew populations (for example, G 
(4,1), G (2,1), G (1,1), W (2,1) and W (0.8,1)), SCL and 
ACL have the same performance in signaling positive 
mean shifts, but SCL is seriously insensitive to signal 
negative mean shifts. ACL has better ability in detecting 
negative mean shifts than in detecting positive mean 
shifts. When the population distribution is closing to 
symmetry (for example, W (3.5, 1)), SCL and ACL have 
similar ability, and their performances in detecting both 
positive and negative mean shifts are the same. If 
populations are left-skew distributions (for example, W 
(10,1) and W (5,1)), the performance of SCL is slightly 
better than the performance of ACL in signaling negative 
mean shifts, but the ability of ACL is conspicuously better 
than the ability of SCL in detecting positive mean shifts. To  
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Figure 1. The probability density function for various weibull and normal distributions. 

 
 
 
compare the AARL values of both charts, the perfor 
-mances of ACL are better than the performances of SCL 
when the population is a left-skew distribution. ACL and 
SCL have the same performance and control chart design 
under normality. In addition, AARL values of W (10,1) and 
W (5,1) are smaller than that  of  N  (0,1).  Therefore,  

ACL-Tukey in monitoring of left-skew populations has 
better performance than in monitoring of normal 
population. 

In summary, ACL is more suitable to control skew 
population than SCL. If the process observation follows a 
skew distribution, ACL is  suggested  to  monitor  this  
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Table 1. Values of the ARL and AARL of Tukey’s control charts. 
 

 G (4,1) G (2,1) G (1,1) W (10,1) W (5,1) W (3.5,1)    W (2,1)           W (0.8,1)       N (0,1) 
Charts SCL ACL SCL ACL SCL ACL SCL ACL SCL ACL SCL ACL SCL ACL SCL ACL SCL ACL 

kU 2.594 2.667 3.138 3.138 4.122 4.122 2.190 1.239 1.654 1.353 1.466 1.468 1.957 2.121 5.968 5.976 1.7238 1.7238 
kL 2.594 0.859 3.138 0.555 4.122 0.262 2.190 2.298 1.654 1.787 1.466 1.462 1.957 0.785 5.968 0.163 1.7238 1.7238 

UCL 11.787 11.973 8.126 8.126 5.915 5.915 1.362 1.219 1.544 1.457 1.680 1.681 2.432 2.537 9.224 9.234 3.0000 3.0000 
LCL -4.142 0.325 -4.472 0.000 -4.241 0.000 0.554 0.537 0.303 0.265 0.118 0.119 -0.718 0.033 -7.509 0.000 -3.000 -3.000 
� ARL  

-3.00 8.46 1.14 17595 1.08 7441.1 1.05 3.49 4.09 1.97 2.28 1.68 1.67 2.75 1.15 3058.3 1.04 2.00 2.00 
-2.00 9006.1 1.59 4783.7 1.29 2737.4 1.16 12.12 14.84 5.56 7.13 4.23 4.21 23.55 1.66 1539.6 1.11 6.30 6.30 
-1.50 3977.6 2.35 2507.0 1.60 1660.3 1.29 25.33 31.66 11.57 15.72 8.87 8.80 17629 2.43 1085.9 1.19 14.96 14.96 
-1.00 1777.5 4.85 1319.0 2.42 1007.0 1.58 56.98 72.80 28.60 41.86 24.60 24.32 4369.6 4.58 762.44 1.36 43.88 43.88 
-0.75 1194.1 8.81 958.38 3.48 784.29 1.89 88.00 113.76 48.73 74.77 47.93 47.26 2264.7 7.40 637.76 1.53 81.19 81.19 
-0.50 805.05 21.39 697.16 6.26 610.80 2.53 138.81 181.41 88.88 143.17 108.08 106.22 1205.7 14.67 532.80 1.87 155.16 155.16 
-0.25 544.82 85.66 507.80 19.39 475.69 4.48 223.97 288.36 175.76 277.74 266.01 261.47 659.39 43.83 444.54 2.80 281.03 281.03 

                   
0.00 370.22 370.40 370.38 370.40 370.47 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 

                   
0.25 252.69 291.28 270.56 270.58 288.52 288.52 629.38 227.43 623.05 214.95 196.45 198.29 213.72 351.25 308.19 309.87 281.03 281.03 
0.50 173.29 199.40 197.96 197.97 224.70 224.70 1101.3 84.66 417.26 90.77 90.99 91.80 126.67 203.19 256.04 257.45 155.16 155.16 
0.75 119.45 137.18 145.10 145.11 175.00 175.00 1955.5 32.84 165.70 40.63 45.67 46.02 77.12 120.73 212.39 213.56 81.19 81.19 
1.00 82.80 94.89 106.56 106.57 136.29 136.29 2694.1 15.03 68.05 20.36 24.80 24.97 48.23 73.69 175.89 176.87 43.88 43.88 
1.50 40.55 46.24 57.85 57.85 82.66 82.66 302.48 4.92 16.43 6.96 9.05 9.10 20.44 29.75 119.99 120.67 14.96 14.96 
2.00 20.45 23.18 31.72 31.73 50.14 50.14 33.19 2.48 5.99 3.31 4.24 4.26 9.65 13.37 81.22 81.69 6.30 6.30 
3.00 5.84 6.51 9.95 9.95 18.44 18.44 3.35 1.31 1.89 1.47 1.67 1.67 2.96 3.73 36.18 36.41 2.00 2.00 

 AARL  
 613.73 228.56 614.55 286.69 694.07 428.15 1844.0 78.32 146.12 75.32 75.21 75.20 953.20 156.00 885.34 674.91 116.91 116.91 

 
 
 
process. 
 
 
APPLIED ACL-TUKEY’S CHART TO MONITOR 
WIRE BONDING PROCESS OF IC PACKAGING 
 
Wire bonding is a key process in IC packaging and 
is the most common method for electrically 
connecting the aluminum bonding  pads  on  a  

microchip surface to the package inner lead 
terminals on the lead-frame. Thermosonic ball 
bonding technology is applied to the wire bonding 
process. The thermosonic ball bonding uses a 
capillary tip made of tungsten carbide or ceramic 
material which feeds a fine diameter Au wire 
vertically through a hole in its center. The pro- 
truding wire is heated by a small flame or capacitor 
discharge spark, causing the wire to melt and form 

a ball at the tip. During bonding, the ultrasonic 
energy and the pressure cause a metallurgical 
bond to form between the Au wire and the Al pad. 
Upon completion of the ball bond, the bonding 
mechanism moves to the substrate inner lead pad 
and forms a thermo compression wedge bond. Up 
to this phase, the wire is broken and the tool 
continues to the next die bonding pad. 

During the wire bonding process, the  gold  ball  
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Figure 2a. Tukey’s charts for monitoring of a wire bonding process, (ACL- Tukey’s 
chart) 

 
 
 
Shear strength is an important quality characteristic and 
must be monitored. The destructive testing approach is 
utilized to measure the ball shear strength. Since the ball 
shear strength variance of the same IC is very small, 
previous sampling approaches sampled one IC and 
randomly selected one ball from it to perform testing. As a 
consequence, only single shear strength can be obtained 
during each testing for the monitoring. The gold ball shear 
strength is the larger-the-better characteristic. When the 
gold ball shear strength mean becomes small, the control 
chart must signal quickly this variation for eliminating the 
assignable cause. As a result of signaling quickly, the 
mean shifts ACL-Tukey’s chart is selected to control the 
gold ball shear strength mean. 

Since historical data obtains 100 testing values of ball 
shear under in-control process, these testing values are 
verified following weibull distribution with � = 2.82 and � = 
20.55 through application of the Kolmogoroc-Smirnov test 
(P-value = 0.477). The mean and standard deviation of 
these testing values are 18.304(g) and 7.032, respectively, 
and the ( )75.01−F , ( )25.01−F  and IQR are 13.2110, 
23.0736 and 9.8626, respectively. Let f(x) be the pdf of 
weibull distribution with � = 2.82 and � = 20.55, compute 
the ARL and AARL functions, and take them to the design 
model. Let kU and kL be the decision variables to design 
ACL-Tukey’s chart, the optimal kU and kL are 1.589 and 
1.243, respectively, and then the UCL and LCL are 
38.7486 and 0.9518, respectively. A similar approach can 
obtain the optimal k value of SCL-Tukey’s chart, the 
optimal k is 1.5739, and then UCL and LCL of 
SCL-Tukey’s chart are 38.5961 and -2.3115, respectively. 

Figures 2a and b shows the monitoring of wire bonding 
processes during 144 periods. The  ACL-Tukey’s  chart  

signals a shift at 143 rd sampling, but SCL-Tukey’s chart 
does not signal any variation during 144 periods. An 
investigation of the operation procedure knows the 
occurrence cause of this variation is due to use of a fault 
machine parameter between 137th to 138th sampling. The 
gold ball shear strength mean reduces to 7.267(g) from 
18.304(g), and the shift size � is about -1.57. This 
practical case shows ACL-Tukey’s chart has better ability 
in signaling the negative shift than SCL-Tukey’s chart for 
the right-skew population and ACL-Tukey’s chart is more 
suitable than SCL-Tukey’s chart in monitoring the real 
industrial process. 
 
 
CONCLUSIONS 
 
This study proposes Tukey’s chart with asymmetrical 
control limits (ACL-Tukey’s chart) to monitor skew popu- 
lation. A comparative study of the statistical measurement 
and a real case of IC packaging are given respectively to 
show the performance of ACL-Tukey’s chart in monitoring 
of the skew population from the theoretical and practical 
viewpoints. 

In this comparative study, ACL-Tukey’s chart in 
signaling negative mean shift is more sensitive than 
Tukey’s chart with symmetrical control limits (SCL- 
Tukey’s chart), but ACL-Tukey’s chart and SCL- Tukey’s 
chart have similar performance in signaling positive shift 
for monitoring of right-skew population. If population 
follows a left-skew distribution, it can obtain the contrary 
result to the monitoring of right-skew population in the 
performance of signaling positive and negative shifts. A 
statistical design model can provide the optimal 
parameters of ACL-Tukey’s chart for monitoring of  skew  
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Figure 2b. Tukey’s charts for monitoring of a wire bonding process, (SCL- Tukey’s chart), 

 
 
 
populations. A case of IC packaging provides a procedure 
to carry out ACL-Tukey’s chart monitoring the industrial 
process. This case also verifies the good ability of 
ACL-Tukey’s chart in signaling shifts and SCL-Tukey’s 
chart is insensitive to signal shifts for monitoring the skew 
population. If the process observation follows a skew 
distribution, ACL-Tukey’s chart is suggested to monitor 
this process. 
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