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This study uses an alternative approach to reexamine a replenishment lot size problem with 
discontinuous issuing policy and imperfect rework. A straightforward approach in terms of algebraic 
derivation is proposed instead of conventional method with the need of applying first-order and 
second-order differentiations to system cost function for proof of convexity before derivation of the 
optimal lot size. The research result obtained in this study is identical to that in Lee et al. (2011), where 
they adopted conventional method to solve the problem. The proposed algebraic approach is helpful for 
practitioners who may have insufficient knowledge of differential calculus to understand with ease such 
a real life vendor-buyer integrated problem. 
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INTRODUCTION 
 
The most economical production lot size was first 
proposed by Taft (1918) to assist manufacturing firms in 
minimizing total production costs (it is also known as 
economic production quantity (EPQ) model). The EPQ 
model implicitly assumes that all items produced are of 
perfect quality. However, in real world production settings, 
due to different factors generation of nonconforming items 
seems inevitable. For this reason, many studies have 
been carried out during the past decades, to address the 
imperfect production and its related issues (Barlow and 
Proschan, 1965; Mak, 1985; Henig and Gerchak, 1990; 
Grosfeld-Nir and Gerchak, 2002; Chiu and Chiu, 2006; 
Jha and Shanker, 2009; Taleizadeh et al., 2010; Lodree et 
al., 2010; Chiu et al., 2010a-c; Ma et al., 2010; Saha et al., 
2010; Sana, 2010; Mehdi et al., 2010; Wazed et al., 
2010a-b; Kreng and Tan, 2010; Banerjee and Sharma, 
2010; Chiu et al., 2011a).  

Another unrealistic assumption of classic EPQ model is 
the continuous inventory issuing policy, for in vendor- 
buyer integrated production-shipment  system,  periodic 
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deliveries instead of continuous policy is often used. 
Research has since been focused on addressing issues 
of various aspects of multi-deliveries in supply chain 
optimization (Goyal, 1977; Banerjee, 1986; Hahm and 
Yano, 1992; Viswanathan, 1998; Swenseth and Godfrey, 
2002; Diponegoro and Sarker, 2006; Kim et al., 2008; 
Abolhasanpour et al., 2009; Chiu et al., 2009; Chen et al., 
2010; Ye and Xu, 2010; Wong, 2010; Hsieh et al., 2010; 
Chiu et al., 2011b; Chen et al., 2011; Lee et al., 2011). 

Lee et al. (2011) investigated the optimal replenishment 
lot size for a vendor-buyer integrated system with 
discontinuous issuing policy and imperfect rework. They 
employed the differential calculus to prove the convexity 
and derive the optimal production batch size for such a 
specific problem. Grubbström and Erdem (1999) 
presented an algebraic approach to solve the economic 
order quantity (EOQ) model with backlogging, without 
reference to the use of derivatives. Other studies that 
have applied the same (or similar) method include Cheng 
and Ting (2010), Chiu et al. (2010d). This paper applies 
the same algebraic approach to reexamine the problem 
studied by Lee et al. (2011). As a result, the optimal 
replenishment lot size and the long- run average cost 
function can all be  derived  without  using  differential



 

3818         Afr. J. Bus. Manage. 
 
 
 

 
 

Figure 1. Producer’s on-hand inventory of perfect quality items for the 
proposed model with discontinuous (n + 1) issuing policy and imperfect 
rework. 

 
 
 
calculus. 

 
 
METHODS 

 
In this study, an alternative approach is adopted to reexamine Lee et 
al.’s model (2011) as stated earlier. To ease the readability, this 
study adopts the exact notation as used in Lee et al. (2011). 
Description the model is as follows: consider a real life production 
system may produce x portion of random nonconforming items at a 
production rate d. Among nonconforming items, a θ portion is 
assumed to be scrap and the other (1 - θ) portion can be reworked 
at a rate P1, within the same cycle when regular production ends. A 
θ1 portion (where 0 ≤ θ1 ≤ 1) of reworked items fails during rework 
and becomes scrap. The constant production rate P is larger than 
the sum of demand rate λ and production rate of defective items d. 
That is: (P - d - λ) > 0; where d can be expressed as d = Px. Let d1 
denote production rate of scrap items during rework process, then d1 

= P1θ1. 
Under the proposed n + 1 delivery policy, an initial installment of 

finished products is delivered to customer for satisfying the demand 
during producer’s production uptime and rework time. Then, at the 
end of rework, when the rest of production lot is quality assured, 
fixed quantity n installments of finished products are delivered to 
customer at a fixed interval of time.  

Cost variables include setup cost K per production run, unit 
production cost C, unit holding cost h, unit rework cost CR, disposal 
cost per scrap item CS, holding cost h1 for each reworked item, fixed 
delivery cost K1 per shipment, and delivery cost CT per item shipped 
to customers. Additional notation includes: 
 

Q = production lot size to be determined for each cycle. 
t = the production time needed for producing enough perfect items 
for satisfying product demand during the production uptime t1 and 
the rework time t2. 
t1 = the production uptime for the proposed EPQ model. 
t2 = time required for reworking of defective items. 
t3 = time required for delivering the remaining quality assured 
finished products. 
H = the level of on-hand inventory in units for satisfying product 
demand during manufacturer’s regular production time t1 and rework 
time t2. 
H1 = maximum level of on-hand inventory in units when regular 
production ends. 

H2 = the maximum level of on-hand inventory in units when rework 
process finishes. 
T = cycle length. 
tn = a fixed interval of time between each installment of products 
delivered during t3. 
n = number of fixed quantity installments of the rest of finished lot to 
be delivered during t3. 
I(t) = on-hand inventory of perfect quality items at time t. 
φ = overall scrap rate per cycle (sum of scrap rates in t1 and t2). 
TC(Q) = total production-inventory-delivery costs per cycle for the 
proposed model. 
E[TCU(Q)] = the long-run average costs per unit time for the 
proposed model. 
 
Figure 1 depicts producer’s on-hand inventory of perfect quality 
items (Lee et al., 2011). Again, for the purpose of easing readability, 
this paper adopted the same basic formulations as that in Lee et al. 
(2011). Total production-inventory-delivery cost per cycle TC(Q) 
consists of variable manufacturing cost, setup cost, variable rework 
and disposal cost, the fixed and variable (n + 1) shipping cost, 
holding cost for perfect quality and nonconforming items during t1 
and t2, holding cost for reworked items during t2, and vendor’s 
holding cost for finished goods during the delivery time t3. Using the 
same formulation procedures, one has TC(Q) as follows: 
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Taking into the randomness of defective rate x, one can use the 
expected values of x in cost analysis and with further derivation one 
obtains E[TCU(Q)] as follows [for detailed computations one can 
refer to Appendix in Lee et al. (2011)]: 
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The algebraic approach 
 
Here, algebraic approach is employed to derive the optimal 
replenishment lot size and the optimal number of deliveries. It is 
noted that decision variable Q in Equation 2 has the forms of Q-1 and 
Q. Let π1, π2, and π3 denote the following: 
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Then Equation 2 becomes 
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With further rearrangements one has 
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One notes that E[TCU(Q)] is minimized, if the second term in 
Equation 9 equals zero. That is, 
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RESULTS AND DISCUSSION 
 
Substituting Equations 4 and 5 in Equation 11 and with 
further derivations, one has 
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(12) 
 
It is noted that Equation 12 is identical to Q* in Lee et al. 
(2011), which was derived using the conventional 
differential calculus approach. Furthermore, in Equation 9 
suppose the optimal replenishment lot size Q* is used, the 
second term becomes zero; so the long-run average cost 
E[TCU(Q*)] is 
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  1 2 32E TCU Q                     (13) 

 
 

Numerical example with further verification 
 

The aforementioned results are verified by using the same 
numerical example as in Lee et al. (2011). Consider the 
following system parameters: 
 

P = 60000 items per year 
λ = 3400 items per year 
x = a random scrap rate is assumed to be uniformly 
distributed over interval [0, 0.3] 
θ = 0.1, the scrap rate during regular process 
C = $100 per item 
K = $20000 per production run 
P1 = 2,200, rate of rework 
CR = $60 per item reworked 
θ1 = 0.1, the failure in rework rate 
CS = $20, disposal cost for each scrap item 
h = $20 per item per year 
h1 = $40 holding cost per item reworked 
CT = $0.1 per item delivered 
K1 = $4350 per shipment, a fixed cost. 
h2 = $80 per item kept at the buyer’s end, per unit time. 
 

Suppose the proposed delivery policy has total shipments 
(n + 1) = 4 (as Scenario 2 in Lee et al. (2011)), from 
computations of Equations 12 and 13, one obtains the 
optimal replenishment lot size Q* = 4271 and E[TCU(Q*)] 
= $441949. 

One notes that both of the aforementioned results are 
identical to that were given in Lee et al. (2011). 
Furthermore, for computing the long-run average costs 
per unit time E[TCU(Q*)], the proposed Equation 13 is 
much simpler than by the use of Equation 2. 
 
 

Conclusions 
 

Lee et al. (2011) used the conventional differential 
calculus method to derive the optimal replenishment lot 
size for a production system with discontinuous issuing 
policy and imperfect rework. This paper reexamines their 
problem by using an algebraic approach. Such a 
straightforward derivation allows practitioners who may 
not have sufficient knowledge of differential calculus to 
understand such a real life production system with ease. 
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