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Data envelopment analysis (DEA) models compute efficiency score for decision making units (DMUs) 
and discriminate between efficient and inefficient DMUs. Therefore, they rank DMUs except when 
multiple DMUs have an efficiency score of 1. This paper proposes a new method for complete ranking 
of DMUs that is based on cross-efficiency evaluation method. One of the drawbacks of the cross-
efficiency evaluation method is the existence of multiple cross-efficiency scores due to the presence of 
alternative optimal solutions of the dual multiplier model. Hence choosing weights between alternative 
optimal solutions as part of a procedure for ranking DMUs is problematic. Liang et al. (2008) introduced 
alternative secondary goals in cross-efficiency evaluation. However, this paper finds that their 
approach is problematic in some situations. As a result, this paper seeks to introduce a new secondary 
objective function in cross-efficiency evaluation for removing their difficulties. Numerical 
demonstration reveals the validity of the proposed method by using a real data set of a case study 
which consists of 20 Iranian bank branches. 
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INTRODUCTION 
 
Data envelopment analysis (DEA) is a mathematical 
programming technique to evaluate the relative efficiency 
of decision making units (DMUs) with multiple input-
output. The efficiency measure obtained by DEA can be 
used for ranking DMUs, but this ranking can not be 
applied to efficient units. One of the interesting research 
subjects is to discriminate between efficient DMUs. 
Several authors proposed methods for ranking efficient 
DMUs (Andersen and Petersen, 1993; Jahanshahloo et 
al., 2007; Alirezaee and Afsharian, 2007). One of the 
approaches commonly taken is to employ one of the 
several cross efficiency models. Cross efficiency was first 
offered by Sexton et al. (1986) and extended first by 
Doyle and Green (1994) who responded to the argument 
that Sexton’ approach suffers from the existence of alter-
nate  optima  in  solving  for  each  DMUs  best  efficiency 
score. The suggested approaches offered by Doyle and 
Green were later extended  by  Liang  et  al.  (2008)  who 
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presented three models for choosing among the alternate 
optima for each DMU. Each new secondary objective 
function represents an efficiency evaluation criterion. 
With these new models, one can compare the efficiency 
scores and obtain a better picture of cross efficiency 
stability with respect to multiple DEA weights.   

The purpose of the current paper is to extend the me-
thod of Liang et al. (2008) by introducing a new criterion. 
We also aim to disclose that the different secondary 
objective functions in their paper lead to multiple cross 
efficiency scores and hence the ranking of units is not 
possible.  

While they proposed that each of various forms of 
secondary goals may be applicable in some circum-
stances, no attempt was made to supply a solid 
justification for choosing the most favorable goal. Also, in 
attempting to present the difficulties of their method, we 
show that the existence of alternate optimal weights for 
each secondary model yields various results.  

We illustrate our claims with numerical examples. Fur-
ther, various forms of secondary goals proposed by Liang 
et al. (2008) are presented. A new secondary objective 
function in cross-efficiency evaluation is  then  introduced 
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Table 1. Cross-evaluation matrix. 

 

 DMU1 DMU2 .            .            . DMUn 

DMU1 E11 E12 .            .            . E1n 

DMU2 E21 E22 .            .            . E2n 

. 

. 

. 

. 

. 

. 

   

DMUn En1 En2 .            .            . Enn 

 
 
 

and numerical example is provided to illustrate the power 
of our proposed ranking methodology.  
 
 
CROSS-EFFICIENCY EVALUATION  
 
Suppose that we have n DMUs, where each DMUj, j = 
1,…,n, produces the same s outputs in (possibly) 

different amounts 
rj

y , r = 1,…,s, using the same m 

inputs 
ij

x , i = 1,…,m, also in (possibly) different amounts. 

All data are assumed to be nonnegative, but at least, one 
of the components of every input and output vector is 
positive. Cross-efficiency is often computed in two 
phases. The first phase is calculated using the CCR 
(Charnes, Cooper and Rhodes) multiplier model which is 
presented as follow:  
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Where rpu  and ipv  are the assigned weights to the rth 

output and ith input for DMUP, respectively.  
The cross-efficiency of DMUt, using the optimal weights 

that DMUP has chosen in model (1), is then: 
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Where (*) denotes optimal solutions in model (1). The 
values obtained from (2) can be organized in a matrix 
which is called cross-evaluation matrix as shown in Table 
1.   
 

For DMUt (t = 1,…,n), the average of all ptE  (p = 1,…,n), 

∑
=

=

n

p

ptt E
n

E
1

1
, referred to as the cross-efficiency score 

for DMUt. We note that model (1) can be transformed into 
the following linear programming (LP) problem (Charnes 
and Cooper, 1962): 
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Model (3) can also be expressed equivalently in the 
following deviation variable form: 
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Where pα  is the deviation variable for DMUp and jα  the 

deviation variable for the jth DMU. The deviation variable 

j
α  is referred to as the p-inefficiency of DMUj by  

Liang et al. (2008). Liang et al. (2008) proposed that the 
optimal weights obtained from model (3) (or model (4)) 
are usually not unique and hence, the cross efficiency 
defined in (2) is arbitrarily generated, depending on the 
optimal solution arising from the particular software in 
use. To resolve this ambiguity, they examined various 
forms of secondary goals for aiding in cross evaluation. 
The following model was first considered where the 
secondary goal is to minimize the sum of inefficiencies: 
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For the purpose of minimizing the maximal p-inefficiency, 
Liang et al. (2008) considered as a secondary goal, 
solving the model: 
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Model (6) can be expressed equivalently in the following 
form: 
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The stated model derives a multiplier bundle that affords 
the maximum possible efficiency score to the worse-
performing DMU. In so doing, the resulting efficiencies of 
the other DMUs may be forced to be closer in value. 
Specifically, in attempting to show this worst-performing 
DMU in its best possible light, the scores of the other 
(better-performing) DMUs may decrease, hence leading 
to DMU performance levels that display less variation 
than was previously the case. 

In the spirit of seeking to minimize the variation among 
the efficiencies of the DMUs, Liang et al. (2008) proposed 
formalizing this concept through: 
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Table 2. Data for five DMUs. 

 

DMU A B C D E 

Input1 2 2.5 3 6 7.5 

Input2 6 7.5 3 2 2.5 

Output 1 1 1 1 1 
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Liang et al. (2008) calculated the new cross-efficiency 
score for any DMUt (t=1,…,n) using n optimal weight 
vectors obtained from the above models.   
 
 
METHODOLOGY  

 
It is possible that the previous secondary models have alternate 
optima and this leads to multiple cross-efficiency scores for a given 
DMU. In other words, the Liang et al. (2008) approach is problema-
tic when there are alternative optimal solutions for each of the 
stated models ((5), (7) and (9)). Our claim will be further proved by 
the illustration of a simple example. 

To elaborate the problem in their approach, we present a nu-
merical example with the data set as in Table 2. By using model (3), 
we can see that DMUs A, C and D are CCR efficient. The initial 
results are given in Table 3, where in the lines we have efficient 
DMUs and in the columns we have the optimal weights of models 
(5), (7) and (9). 

In order to rank these DMUs, models (5) and (9) are employed to 
compute the cross-efficiency scores as illustrated in Tables 4 and 5. 
In the case of each model, the existence of alternative optimal 
weights for DMUc leads to different ranking results. That is, each 
model provides some relevant cross-efficiency scores corres-
ponding to its alternative optimal solutions.   

For example, using the weight vectors optimized for DMUc in 
model (5), that is, (1, 0.25, 0.08333333) and (1, 0.08333333, 0.25), 
we obtain the ranking scores of DMUA as 0.866666674 and 
0.733333334, respectively, as documented in the first row of Table 
4. Correspondingly, based upon these weight vectors, the ranking 
related scores of DMUD are 0.733333334 and 0.866666674. 

Therefore, it is appropriate to apply the novel model as secon-
dary objective function. To do this, we refine the selection of the 
optimal weights made in the first phase of cross-efficiency by 
choosing those that maximize the efficiency of the n-1 other DMUs 

separately. For this purpose, suppose that 
*

pA
 
(p=1,...,n) be the 

set of optimal weights for DMUp. The following linear fractional 
programming selects between the alternative optima (if any) 
provided by (3) as: 
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Table 3. The optimal weights of secondary models. 

 

DMU 
Model (5)   Model (7)   Model (9 

u  1v
 2v

  
u  1v

 2v
  

u  1v
 2v

 

A 1 0.25 0.083333  1 0.25 0.083333  1 0.25 0.083333 

             

C 1 0.25 0.083333 1 0.166667 0.166667 1 0.15 0.183333 

  1 0.083333 0.25      1 0.183333 0.15 

             

D 1 0.083333 0.25 1 0.083333 0.25 1 0.083333 0.25 
 
 
 

Table 4. Results of cross-efficiency score based on alternative optimal weights of model (5). 
 

DMU   

A 0.866666674 0.733333334 

C 1.00000000 1.00000000 

D 0.733333334 0.866666674 
 
 
 

Table 5. Results of cross-efficiency score on alternative optimal weights of model (9).  

  

DMU   

A 0.771428606 0.796491242 

C 1.00000000 1.00000000 

D 0.796491242 0.771428606 
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formed to a linear programming (LP) problem (Charnes 
and Cooper, 1962), which is as follows: 
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Table 6. Real data and their CCR efficiencies. 

 

Branch  
Inputs  Outputs 

CCR efficiency 
Staff Computer terminals Space (m

2
)  Deposits Loans Charge 

DMU1  0.950 0.700 0.155  0.190 0.521 0.293 1.000 

DMU2  0.796 0.600 1.000  0.227 0.627 0.462 0.833 

DMU3  0.798 0.750 0.513  0.228 0.970 0.261 0.991 

DMU4  0.865 0.550 0.210  0.193 0.632 1.000 1.000 

DMU5  0.815 0.850 0.268  0.233 0.722 0.246 0.899 

DMU6  0.842 0.650 0.500  0.207 0.603 0.569 0.748 

DMU7  0.719 0.600 0.350  0.182 0.900 0.716 1.000 

DMU8  0.785 0.750 0.120  0.125 0.234 0.298 0.798 

DMU9  0.476 0.600 0.135  0.080 0.364 0.244 0.789 

DMU10  0.678 0.550 0.510  0.082 0.184 0.049 0.289 

DMU11  0.711 1.000 0.305  0.212 0.318 0.403 0.604 

DMU12  0.811 0.650 0.255  0.123 0.923 0.628 1.000 

DMU13  0.659 0.850 0.340  0.176 0.645 0.261 0.817 

DMU14  0.976 0.800 0.540  0.144 0.514 0.243 0.470 

DMU15  0.685 0.950 0.450  1.000 0.262 0.098 1.000 

DMU16  0.613 0.900 0.525  0.115 0.402 0.464 0.639 

DMU17  1.000 0.600 0.205  0.090 1.000 0.161 1.000 

DMU18  0.634 0.650 0.235  0.059 0.349 0.068 0.473 

DMU19  0.372 0.700 0.238  0.039 0.190 0.111 0.408 

DMU20  0.583 0.550 0.500  0.110 0.615 0.764 1.000 
 
 
 

Table 7. Results of cross efficiency score based on alternative secondary goals. 
   

Branch Model (5) Model (7) Model (9) 

1 0.65172704 0.5926991367 0.5359937936 

4 0.8985914917 0.8820317924 0.8018723733 

7 0.9655714682 0.9655714653 0.8625539482 

12 0.9223182497 0.8959971061 0.804386424 

15 0.9999999495 0.8016275456 0.7190537771 

17 0.8160075547 0.7898727028 0.6743030822 

20 0.7108756472 0.7577520766 0.6865954188 
 
 
 
 

ε≥k  
 

Whereε  is a non-Archimedean element smaller than any positive 

real number. 
To sum up, we employ a new cross-efficiency of DMUt in the cross-
evaluation  matrix.  For  each   efficient   DMUp,   the   sum   of   row  

quantities of other DMUs, ∑
≠

=

=

n

pt
t

ptp EE
1

, is used for ranking. 

Hence, DMUl has a better rank than DMUk, if both DMUs are the 

same in efficiency score and kl EE 〉 . That is, each DMU that 

maximizes the sum of the n-1 other DMUs’ cross efficiencies has 
the best rank. 

Infeasibility, inability to rank non  extreme  efficient  DMUs,  which  

may happen for some ranking methods, do not occur in this 
method.     
 
 

NUMERICAL EXAMPLE  
 
Here, we are going to compare the foregoing models by 
using the inputs and outputs of 20 Iranian bank branches 
which are presented in Table 6. The data of these bran-
ches have been previously analyzed in Amirteimoori and 
Kordrostami, (2005), and Jahanshahloo et al. (2007). 
Note that the data are scaled. As can be seen in the last 
column of Table 6, DMUs 1, 4, 7, 12, 15, 17 and 20 are 
CCR efficient. Table 7 reports the results of cross effi-
ciency score based upon unique optimal weights 
obtained from various forms of secondary  goals  (models  

B
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(5), (7) and (9)) that is summarized thus: Optimal weights obtained from model (5): 
 

  

 

 

 

 

 

 

11u =2.119988, 21u =1.040665, 31u =0.1877675, 11v =0.2374179, 21v =0, 31v =4.996471 

14u =0.7289014, 24u =0.2977297, 34u =0.6711569, 14v =1.086949, 24v =0, 34v =0.2847113 

17u =0.8355995, 27u =0.9421343, 37u =0, 17v =0.8490030, 27v =0, 37v =1.113048 

121u =0.8593443, 122u =0.9689064, 123u =0, 121v =0.8731287, 122v =0, 123v =1.144677 

151u =0.8583285, 152u =0.5407308, 153u =0, 151v =0, 152v =0.9713109, 153v =0.1716769 

171u =0.9601902, 172u =0.9135829, 173u =0, 171v =0.5816888, 172v =0.3191518, 173v =1.106440 

201u =0.9392494, 202u =0.3836491, 203u =0.8648408, 201v =1.400623, 202v =0, 203v =0.3668739 
 

Optimal weights obtained from model (7): 
 

 

 

 

 

 

 

 

11u =2.119988, 21u =1.040665, 31u =0.1877675, 11v =0.2374179, 21v =0, 31v =4.996471 

14u =0.9315927, 24u =0.3457089, 34u =0.6017146, 14v =0.7985953, 24v =0.5622092, 34v =0 

17u =0.9997408, 27u =0.9089413, 37u =0, 17v =0.704374, 27v =0.6765715, 37v =0.2503206 

121u =0.04200873, 122u =1.077825, 123u =0, 121v =0.7104028, 122v =0.3931596, 123v =0.6600376 

151u =0.8612717, 152u =0.4411961, 153u =0.2360703, 151v =0.2502842, 152v =0.7310307, 153v =0.2979469 

171u =0.1132427, 172u =0.9898082, 173u =0, 171v =0.5818870, 172v =0.5202538, 173v =0.5168812 

201u =1.202371, 202u =0.4461934, 203u =0.7766102, 201v =1.030717, 202v =0.7256221, 203v =0 

 
 

 
Optimal weights obtained from model (9): 

 
 

 

 

 

 

 

 

11u =2.119988, 21u =1.040665, 31u =0.1877675, 11v =0.2374179, 21v =0, 31v =4.996471 

14u =0.4094238, 24u =0.3803971, 34u =0.6805702, 14v =0.9144441, 24v =0.2791916, 34v =0.2640500 

17u =0.3977990, 27u =0.7740786, 37u =0.3225277, 17v =1.113190, 27v =2667018, 37v =0.1131304 

121u =0.4321273, 122u =1.025838, 123u =0, 121v =0.8576898, 122v =0.1115848, 123v =0.9093468 

151u =0.9900377, 152u =0.03802422, 153u =0, 151v =0.2888438, 152v =0.7244091, 153v =0.2532296 

171u =0.5976200, 172u =0.9462142, 173u =0, 171v =0.4098929, 172v =0.8055163, 173v =0.5209623 

201u =0.5018829, 202u =0.4862679, 203u =0.8452070, 201v =1.166068, 202v =0.3331228, 203v =0.2739295 
 

 
 
It can be seen that models (5), (7) and (9) yield various 
results and hence the ranking of units is not possible. In 
other words, the results of cross-efficiency score are not 
unique or stable. For example, in the second column, 
DMU15 gets the most ranking related score, whilst in the 
third column, it has 4

th
 rank amongst DMUs. DMU17, 

which is located in the sixth position by the last column, 
gets the fifth rank according to third column and so on. 
The question is: which of secondary objective functions 
must be used in this situation. Although Liang et al. 
(2008) demonstrated that their proposed models with the 
different objective functions can be applied under 
different  circumstances,  but  it  is  difficult  in  general  to  

choose between different criteria in determining the final 
cross efficiency.  

Using the proposed ranking methodology, we obtain 
the new cross-efficiency scores of the seven DEA 
efficient bank branches. The results are given in Table 8, 
from which it is seen that bank branch 15 has the biggest 
ranking score and is therefore the best of the 20 bank 
branches. It can be seen easily that the efficiency ranking 
is unique, whereas the cross-efficiency evaluation may 
result in different efficiency rankings, depending on which 
of the secondary models is utilized. Indeed, the proposed 
ranking methodology can successfully distinguish 
between all DMUs and hence makes  a  new  contribution  
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Table 8. Results of ranking by proposed method. 
 

Branch Model (12) The proposed rank 

1 11.1033995 7 

4 14.278857 2 

7 14.1432995 3 

12 13.2885239 5 

15 14.7564376 1 

17 13.8135663 4 

20 11.9638897 6 
 
 
 

to DEA ranking. 
 
 
Conclusion 
 
In this paper, we  developed  a  ranking  methodology  for 
DMUs by introducing a new criterion. We also compared 
our method with the method developed by  
Liang et al. (2008). We showed that our method is 
superior to this method in removing their deficiencies. 
What we should point out here is that the computation 
complexity of our method can increase with increasing 
the number of DMUs, so, how to provide a better method 
is an interesting issue for future research. 
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