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Technology portfolio selection is one of the critical decision making process for any manager. This 
paper considers a fuzzy mixed portfolio selection with random fuzzy return and new hybrid algorithm 
approach for solving it. Fuzzy set theory is applied to model uncertain and flexible information. Since 
traditional technology evaluation methods is often unable to consider vague data gathered from 
environment, in this paper, the returns of each technology are assumed to be fuzzy random variables. 
In proposed hybrid algorithm we employ outputs of neural networks to produce initial solution for 
genetic algorithm and in order to reduce the computational work. Finally, the model for investment case 
in carwash technologies selection was applied, indicating that the proposed approach can assist 
decision makers in selecting suitable technology portfolios, while there is a lack of reliable project 
information. 
 
Key words: Technology portfolio, fuzzy random variable, neural network, chance programming, genetic 
algorithm, hybrid intelligence. 

 
 
INTRODUCTION 
 
To employ the best function of resources is one of the 
major obligations of technology managers. This issue 
implicates allocating resources (asset, individuals, facili-
ties, equipment…) to a range of various technological 
programs, and it includes a main question that which 
means should be chosen to carry out development aims 
(Jolly, 2003). A good technology portfolio may enable a 
company to promote production profitability, efficiency 
and capability of constant concordance, international 
development and appropriate competitive advantage (Cui 
et al., 2006). Kelly and Rice found out that firms can 
attract trustworthy and consistent associates by creating 
important technology portfolios (Kelly and Rice, 2002).  

For formulating and systematizing these decisions, 
models of technology portfolio were designed in 1980’s, 
with the aim of assisting technology managers in 
undertaking such a delicate task. The main methods of 
technology portfolio modeling, for certain, should take 
Harris et al. (1981), Foster (1981), or Little’s models 
(1981) into account. More recent approaches, regarding 
the interdependences between projects, try to investigate 
the impacts of risk diversification (Ringuest et al., 1999) 
and to propose purchase strategies based on technology 
portfolio  categorization  (Hsuan,   2001),   and   base   on  

qualitative approach (Akinwale and Abiola, 2007) or focus 
on searching for optimized portfolios, that is, suited to the 
new product development strategy of the firm 
(Balachandra, 2001). 
 
 
TECHNOLOGY PORTFOLIO MODELING  
 
Portfolio selection for strategic management is a crucial 
activity in many organizations, and it is concerned with a 
complex process that involves many decision-making 
situations (Lin and Hsieh, 2004). When a company 
intents to perform beyond its investment, it can develop 
its investment based on technology knowledge. Such a 
company can incorporate new knowledge and own 
unique technologies, which demands creating portfolio 
from technological assets (Grindley and Teece, 1997). 
Financial and organizational limitations can affect the 
technology development of a company. This problem can 
be observed particularly in small firms (Chan and Heide, 
1993; Lerner, 1997). Maidique and Patch (1998) indicate 
that strategy technology is a technology portfolio that a 
company devises for gaining advantage in market. 

Technology  managers  need  to  attract,   receive   and 



4052          Afr. J. Bus. Manage. 
 
 
 
transfer technological knowledge to other sections of 
company, under a particular situation (Malik, 2002). In 
addition to above mentioned points, this technology, 
which plenty of studies have been undertaken on it, 
influences other kind of management in the company, as 
well. This management is called portfolio management 
that according to the type of technology carries out major 
revisions in optimal combination of assets. 

One way of improving the market penetration rate of 
efficient technology can be generalization of portfolio 
concept into efficient and inefficient technologies, rather 
than depending on only one kind of technology. Such a 
conception of portfolio can contribute to diversification of 
risk which is associated with investments in efficient 
devices and equipments (Balachandra and Shekar, 
2001). 

So far, copious researches have been undertaken on 
the ground of portfolio selection. And majority of them 
underlie Markowitz approach and his proposed 
mathematical model which was based on mean-variance 
(Markowitz, 1952). This model by keeping its centrality 
has been groundwork of new models of portfolio (Ehrgott 
et al., 2004; Campbell et al., 1997; Elton and Gruber, 
1995; Jorion, 1992). However, investigators have 
proposed other models for portfolio selection that some of 
them are: capital asset pricing model CAPM (Luenberger, 
1997; Lerner, 1997), Semi-variance model (Mossin, 
1966), Safety-first model (Campbell et al., 1997) and so 
on. The portfolio selection problem deals with how to 
form a satisfying portfolio. It is difficult to decide which 
assets should be selected because of the uncertainty on 
their returns (Gupta et al., 2008).  

Inadequacy of Hard or Crisp mathematical models in 
covering uncertain, imprecise and vague states 
necessitates employment of fuzzy principles and method 
(Elton and Gruber, 1995). Particularly, incremental 
development of vagueness and uncertainty sources and 
different approaches for controlling them reveals the 
exigency of proposing new optimized models. The 
information that the decision makers obtain are usually 
expressed with linguistic descriptions such as high risk, 
low benefit or high rate of interest (Sheen, 2005) which 
were identified by Zade’s Fuzzy theory (Zade, 1978). It 
was determined that insufficient knowledge around asset 
return and involved in the behavior of financial markets 
treatment can be captured by means of fuzzy quantities 
and/or fuzzy constraints. 

Recognizing optimized point for a decision maker is 
difficult task and usually due to plurality of choices, it is 
time consuming. Inasmuch as such a decision making 
has to do with selection or non-selection, mostly is 
formulated as 0-1 function (Lin and Hsieh, 2004). 
Applying integer programming to risk priority reduction 
(Glickman, 2008) and using linear programming with 
infinite dimensions (Carlsson and Fuller, 2001) have 
been undertaken in recent years, which each of them has 
attempted to get the optimal answer, in a way.  Therefore  

 
 
 
 
discussing these two states simultaneously that combine 
fuzzy random return and integer selection as a 
comprehensive model can lead to better results 
especially in contrast with initial models. 
 
 
FUZZY RANDOM VARIABLES 
 

In the current situations, future returns are accompanied 
with lots of complexities. Because of this vagueness and 
complicacy, predicting future returns through the method 
of historical data is not feasible. In order to confront this 
problem, researchers have suggested applying Fuzzy 
sets theory (Zade, 1965, 2005). But even in that case, 
there has also been some problems in risk calculation 
which is rooted in uncertainty, furthermore a lot of models 
have been proposed around the issue of portfolio that 
among them Watada (1997), Carlsson et al. (2002) and 
Huang’s model (2007a) can be referred. However, one of 
the best ways in which the investors can manage 
uncertainty is applying random and fuzzy optimal models. 
In real world as well, some of the investors, faced with 
uncertainty, use fuzziness and randomness 
simultaneously (Huang, 2007b), that are indicator of 
random returns with fuzzy parameters and environments 
(Tanaka, 2000; Inuiguchi and Tanino, 2000). 

Random fuzzy variables were introduced for the first 
time by Kwakernaak (1978, 1979). The basis of this 
matter in fuzzy random variable is a measurable function 
from a possibility space to the set of fuzzy variables.  

Fuzzy random variables are indicators of fuzzy random 
phenomena, which are in fact future returns with fuzzy 

values. In other words, each random fuzzy variable X
~

 

includes at least one random variable X  as origin of X
~

. 

So, random fuzzy variable X
~

 is the fuzzy consequence 

of uncertain design of )(~ nRF→Ω  that )( nRF  is the 

class of all the fuzzy numbers in
nR . Figure 1 depicts 

one-dimensional random fuzzy variable. 
After Kwakernaak this concept was developed by 

researchers like Puri and Ralescu (1986), Kruse and 
Meyer (1987) and Liu and Liu (2003a). Liu and Liu 
(2003b) have presented different spectra of Expected 
Value Model (EVM) of fuzzy random variable, and 
because of the necessity of measurability and ranking of 
fuzzy random variables they introduced Numerical 
Expected Value Operator. In 2001 the concepts of 
optimistic and pessimistic values were proposed by Liu 
(2001). The capability of fuzzy random variables, will be 
more obvious when the probability distribution is 
determined. The distribution of random variable of 

),(~ 2σµNX  is considered with fuzzy µ  and definite
2σ . For example if ),~(~ 2σµξ N and µ~  is triangular 

fuzzy  variable ),,(~ cba=µ ,  then  ξ   is  a  random  fuzzy 



Farzad          4053 
 
 
 

 
 
Figure 1. Quality of one-dimensional random fuzzy variable. 

 
 
 
variable with normal distribution value (Liu, 2002). 
 

Definition 1- A random fuzzy variable, is a function of ξ  

from probability space of ),,( rΡΑΩ  to the set of fuzzy 

variables such that { }BCr ∈ωξ (  as a measurable 

function of ω  for any Borel set B from ℜ . For example, if 
),,( rΡΑΩ  is a possibility space and if { }mωωω ,...,, 21=Ω  

and muuu ,...,, 21  are fuzzy variables, then function  
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Is clearly a random fuzzy variable (Liu and Liu, 2003 b; 
Liu 2006). 

For example, if η  is random variable defined on the 

probability space ),,( rΡΑΩ , and a~  is a fuzzy variable, then 

the sum a~+=ηξ  will be a random fuzzy variable 
defined by 
 

Ω∈∀+= ωωηωξ ,~)()( a
                               (2) 

 

Definition 2- Let ξ  be a fuzzy variable with µ  
membership function µ . For any set A of real numbers, 
the credibility is defined as (Liu and Liu, 2002):  
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               (3) 

Definition 3- Let ξ  is a random fuzzy variable that is 

defined on incredibility space )),(,( CrP ΘΘ  then the 
expected value )(ξE is defined as follows:  
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provided that at least one of the two integrals is finite (Liu 
and Liu, 2003c). 
 
 
Portfolio model, fuzzy random variable approach 
 
In this part the technology portfolio is formulated as 
optimized issue with fuzzy objectives. Portfolio selection 
problem involving the random fuzzy variable based on 
the standard asset allocation problem to maximize the 
total future return can be as follows (Hasuike et al., 
2009): 
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that 
Rbaij ∈,

 are real coefficients, and ijr~
 is the 

 
average of the future return rate of technology i , and they 
are in the form of fuzzy random variables, it means that

)(~ RFrij ∈
. Also ijσ

 is the common covariance which is 
considered for risk reduction in portfolio models. To  date,  
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different methods for integrating the twofold objectives 
have been devised. The objective function of the above 
model can be revised in the form of integrating risk 
reduction and the return average increase. For 

undertaking this task, assume that [ ]1,0∈λ is the 
parameter for risk aversion. So it can be written: 
 
And in the case that the values of the variables are in the 
form of integer, we have: 
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Where 0=λ  represents the state of the maximizing the 
return and it is the optimal point with the highest return 
mean. Any value between (0 and 1) is the representative 
of the exchange between the return mean and variance 
that will have an answer between the two ends of the 

problem when 0=λ and 1=λ .  
k is the representative of the limitation of the technologies 
number.  

And u , l  are also the representatives of the high and low 
limits considered by the investor to purchase the type i  
technology.  
 
One of the dimensions of the twofold models of portfolio 
is decreasing the risk, which is fulfilled by minimizing the 
variance. In this study, by considering the point that the 
returns of technologies are as random fuzzy LR 
variables, the covariance of these variables equals 
(Nather, 1997; Korner, 1997): 
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That rml ,, are the triangular fuzzy numbers. Supposing 
that the random LR variables are symmetrical, we have: 
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Regarding the independence assumption of rml ,,  it can 
be written: 
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And 
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Regarding the point that both left and right ranges are 
equal when the random variables are normal, it can be 
written: 
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Where ir
~

 , jr~
 , the returns of variables i  and j , and il

~
, 

jl
~

 are indicators of their ranges. 
 
The type of above model cannot be solving with common 
methods so we employ Max-Min approach and nonlinear 
programming methods. The nonlinear algorithm that 
would be considered in this research is hybrid algorithm. 
Nonlinear optimization will employ hybrid intelligence 
algorithm that use neural networks outputs as the input 
chromosomes (Huang, 2007b) and Max-Min 
approximation can be based on Lai and Hwang (1992).  
 
 
PROPOSED MODEL 
 
The objective function of the problem 
 
In the mean and variance model of Markowitz (1952, 
1959), the returns have been considered as random 
variables and it has been supposed that the investors are 
aiming at striking balance between maximizing the return 
and minimizing the risk of investment. Thus, the returns 
with the mean, and the risk with the variance portfolio 
became quantitative.  

The random fuzzy variables are one of the best 
possible ways to encounter the simultaneous random and 
fuzzy uncertainty (Li and Xu; 2009). If we suppose that 
the return of technology i  is a fuzzy random variable, its 
membership function can be displayed in the simple 
triplet (l, m, u) form, as it is shown in the following: 
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Figure 2. Triangular fuzzy numbers. 

 
 
 
The reason of using triangular fuzzy numbers for the 
fuzzy parameters is the augmentation of calculating 
efficiency (Klir and Yuan, 1995) (Figure 2). 

The return rate of each technology is in the form of 

fuzzy triangular numbers as: ),,( iiiiii mmmr βα +−=

in which im , is the random variable with normal 

distribution )),((~ 2
iii mENm σ , iα  and iβ  are also 

left and right spreads, respectively.  
The objective function of the problem can be reflected 

in the form of defining variables of the future incomes as 
random fuzzy and reducing risk. 
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where:  ir
~

: The mean of the future monthly income of 

technology i  which is in random fuzzy variable form. ijσ
: 

The common covariance 
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We can revise the above objective function in the 
following way: 

Above nonlinear function (13), with replaced expected 
value of distribution, can be rewritten as: 
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Because r is the random with normal distribution, we can 
use normal mean for expected value. And also can be 
rewritten risk objective function as a separate constraint: 
 

iiii bxrCh αγ −≥≤� 1)}(~{
                                           (16)  

 Where ib  represents investigator target return, iα  is the 
predetermined confidence level and γ  is the pessimistic 
return from technology i . 

And also, because the chance of a random fuzzy event 

characterized by 0)( ≥ξf  is a function from (0, 1] to [0, 
1], defined as (Liu, 2002) 
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thus, 
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That for any specific r value can be calculated as follow: 
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The constraints of the problem 
 
a) The starting up constraint: this constraint is related to 
the costs of starting up the technology. The starting-up 
costs should not be higher than the initial budget of 
investment, that: 
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iS , is the required budget for purchasing and starting up 
technology i , and 
BI , is the initial budget of investment.  
b) The workforce constraint: this limitation represents 
individuals that are skilled in working with technology i  
and are needed and should be in access. By taking into 
consideration that determining the exact number of 
qualified individuals in work market is not possible and 
judging about the amount of their skill and their number 
involves some vagueness, the fuzzy numbers’ set is used 
for expressing the judgment of experts.  
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ip~ : The number of required qualified individuals for 
working with technology i . 

iP
~

: The number of available qualified individuals for 
working with technology i . 
c) The return constraint: The return rate of any 
technology for fulfilling investors’ objectives should be 
higher than the investors’ expected return rate for 
Technology i in a span of time. The expected rate is 
taken into account as fuzzy, inasmuch as the vagueness 
and uncertainty of the rate, in order to make every 
specified ranges of return, for each technology, possible 
to investigation. That:  
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 is the future return rate of Technology i   

i
Rexp
~

 is the future expected rate for Technology i  
d) The volume constraint: this limitation is the 
representative of total number of possible technologies. 
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e) The variables constraint. 
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l and u are lower and upper number of one technology 
type in portfolio, respectively. 
 

Now we can formulate the model as: 
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The performance of the model 
 
In order to test the model, investment in starting up a 
huge carwash was studied. Various and related 
technologies in this area included different sorts of fully 
automatic, half automatic, and manual advanced 
machines which were in different groups such as washing 
passenger cars, trucks, tankers, trains, and water jets, 
floor washers, chair washers, polishers, … and in various 
spectra of models and facilities. Since it was not possible 
to mention the commercial names, abbreviator signs 
were used for them. 

First, the rate of the expected return of each technology 
and the right and left limits have been calculated. 
Calculation of the right and left sides’ values, the vector 
of the expected return rate, and the matrix of covariance 
has been made by employing historical data and experts’ 
(the owners of car washes and sellers) ideas. For 
gathering this data, at first the historical data of thirteen 
models of car wash equipments during the past 12 
months in the years 2009-2010 have been collected and 
used for approximating the return rate of technologies 

and covariance matrix nnji aaCovV ×= )),(( . Subsequently, 
the experts and active individuals in this area were asked 

to state their own estimation of the rate of iα  and iβ . 
The mean of these estimates were considered as right 
and left limits and the return rate of fuzzy random variable 
of Technology i  is

))(),(,)(()( iiiiii mEmEmErE βα +−= .  
The number of technologies considered by the investor 

is aggregately four )4( =k  machines, and maximum 
number of technology i and personnel, is 2 Unit, 3 people, 
respectively. Also the initial budget of investment is 400 

million. Expected rate
)( expR

 has obtained 0.85 with 0.3 
and 0.15 upper and lower spreads respectively from 
questioners. 
 
 
HYBRID INTELLIGENT SYSTEM 
 
Since it is difficult to find the optimal solution of the 
proposed model (Chow, Denning; 1994) in traditional 
ways, we use linear and nonlinear (hybrid) approximation 
methods simultaneously. We can use the technique of 
simulation (Colubi, 2002) and genetic algorithm (Holland, 
1975) based on random fuzzy simulation to help find the 
optimal solution with hybrid algorithm. When random 
fuzzy simulation is integrated into GA, the algorithm will 
take a fairly long time to find the optimal solution. In order 
to lessen the computational work, we employ neural 
networks (NNs). NNs are famous for approximating any 
nonlinear continuous functions over a closed bounded set 
(Huang, 2007b). An ANN creates a model of neurons and  
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Table 1. Comparisons of object values by hybrid intelligent system. 
 

Population size mP
 

Crossover function f X 

20 0.2 0.8 0.685879 4,4,7,13 
20 0.2 0.5 0.452937 1,4,12,13 
20 0.3 0.8 0.5503178 4,4,10,13 
20 0.3 0.5 0.8940088 7,7,10,13 
30 0.2 0.8 0.9294400 4,5,12,13 
30 0.2 0.5 0.92452 5,7,12,13 
30 0.3 0.8 0.946780 3,4,5,13 
30 0.3 0.5 0.9543 3,4,10,12 

 
 
 
the connections between them, and trains it to associate 
output neurons with input neurons. The network ‘‘learns’’ 
by adjusting the interconnections (called weights) 
between layers. When the network is adequately trained, 
it is able to generate relevant output for a set of input 
data (Mirbagheri, 2010). 

In order of neural network modeling, we use one input 
layer, one hidden layer (with 13 neurons) and two 
neurons as output layer. In this research, one training 
data set for uncertain objective function employed and for 
training theses data, back propagation algorithm 
investigated. And also, logistic sigmoid function used in 
hidden layer. 

Also, for running genetic algorithm we define an integer 
pop-size = 30 as the number of chromosomes and 
initialize pop-size chromosomes randomly to produce 
feasible chromosomes explicitly. Expected values and 
chances were calculated by them. The probability of 

crossover and probability of mutation are 5.0=cp ,
3.0=mp  respectively.  

The hybrid intelligent algorithm was described as 
follows: 
 
Step 1. Generate training input-output data for uncertain 
functions like 
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by the random fuzzy simulation. 
Step 2. Train a neural network to approximate the 
uncertain functions according to the generated training 
input-output data. 
Step 3. Initialize pop size chromosomes whose feasibility 
may be checked by the trained neural network. 
Step 4.  Update  the  chromosomes   by   crossover   and  

mutation operations. 
Step 5. Calculate the objective values for all 
chromosomes by the trained neural network. 
Step 6. Compute the fitness of each chromosome 
according to the objective values. 
Step 7. Select the chromosomes by spinning the roulette 
wheel according to the different fitness values. 
Step 8. Repeat the fourth to seventh steps for a given 
number of cycles. 
Step 9. Report the best chromosome as the optimal 
solution of technology portfolio selection problem. 
 
A run of the hybrid intelligent algorithm (1000 cycles in 
random fuzzy simulation, 500 training data in NN, and 
500 generations in GA) shows the optimal solution as 

Table 1, whose objective value 954.0=f  is highest 
achieved goal value.  
 
 
CONCLUSION 
 
Because the returns of each technology in the future 
cannot be represented with historical data especially in 
the absence of enough data situation, in this paper, we 
have considered technology portfolio selection in hybrid 
environment with random fuzzy returns and linear and 
fuzzy constraints to set output as integer values. To 
solving randomness and fuzziness simultaneously, a 
hybrid intelligent algorithm is provided to estimate 
objective function with combinational constraints. 
Expected values and the chance constraints were 
calculated with neural network and feasible output 
employed in hybrid genetic algorithm. An example is 
given to illustrate the proposed fuzzy random project 
portfolio selection using real data from Carwash Industry; 
results showed high fitness of model (Table 1). 
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