African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - FDDCDB061322


Vol.15(43), pp. 2447-2464 , October 2016
DOI: 10.5897/AJB2016.15228
ISSN: 1684-5315



Full Length Research Paper

Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene



Leta Tulu Bedada
  • Leta Tulu Bedada
  • Ethiopian Institute of Agricultural Research, P. O. Box 2003, Addis Ababa, Ethiopia.
  • Google Scholar
Miccah Songelael Seth
  • Miccah Songelael Seth
  • Mikocheni Agricultural Research Institute, Mikocheni B Light Industrial Area, Plot No. 24B, Along Coca Cola Road, P. O. Box 6226, Dar Es Salaam, Tanzania.
  • Google Scholar
Steven Maina Runo
  • Steven Maina Runo
  • Plant Transformation Laboratory, Department of Biochemistry and Biotechnology, Kenyatta University, P. O. Box 43844, GPO 00100, Nairobi, Kenya.
  • Google Scholar
Wondyifraw Teffera
  • Wondyifraw Teffera
  • Ethiopian Institute of Agricultural Research, P. O. Box 2003, Addis Ababa, Ethiopia.
  • Google Scholar
Charless Mugoya
  • Charless Mugoya
  • Association for Strengthening Agricultural Research in East and Central Africa (ASARECA), P. O. Box 765, Entebbe, Uganda.
  • Google Scholar
Clet Wandui Masiga
  • Clet Wandui Masiga
  • Association for Strengthening Agricultural Research in East and Central Africa (ASARECA), P. O. Box 765, Entebbe, Uganda.
  • Google Scholar
Richard Okoth Oduor
  • Richard Okoth Oduor
  • Plant Transformation Laboratory, Department of Biochemistry and Biotechnology, Kenyatta University, P. O. Box 43844, GPO 00100, Nairobi, Kenya.
  • Google Scholar
Eduardo Blumewald
  • Eduardo Blumewald
  • 5Department of Plant Sciences, University of California, Davis, CA, USA.
  • Google Scholar
Francis Wachira
  • Francis Wachira
  • Association for Strengthening Agricultural Research in East and Central Africa (ASARECA), P. O. Box 765, Entebbe, Uganda.
  • Google Scholar







 Received: 18 January 2016  Accepted: 21 July 2016  Published: 26 October 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Maize is a staple food crop for millions of Africans. Despite this fact, African farmers have been harvesting average grain yield of not more than 2 t/ha while there is a potential of producing more than 10 t/ha. Drought is one of the major abiotic constraints contributing to this low productivity. Drought diminishes crop productivity mainly by causing premature leaf senescence. The ipt gene codes for isopentenyltransferase (IPT) enzyme which catalyzes the rate limiting step in the biosynthesis of cytokinin and has been shown to enhance tolerance to drought in transgenic crops by delaying drought-induced leaf senescence. This created interest to investigate if ipt gene can be useful in enhancing drought tolerance in locally adapted African tropical maize genotypes. The tropical maize inbred line CML216 was transformed with ipt gene using Agrobacterium-mediated transformation method. Five transgenic lines which were proved to be stably transformed through Southern blot analysis with copy number of 2 to 4 per event were developed. In drought assay carried out in the glass house, transgenic lines expressing the ipt gene showed tolerance to drought as revealed by delayed leaf senescence compared to the wild type plants. Transgenic plants maintained higher relative water content and total chlorophyll during the drought period and produced significantly higher mean grain yield of 44.3 g/plant while the wild type plants produced mean grain yield of 1.43 g/plant. It is proposed that the transgenic lines developed in this study can be further tested for tolerance to drought under contained field trials. Furthermore, transgenic lines developed can be used in breeding programs to improve drought tolerance in other commercial tropical maize genotypes through conventional breeding.

Key words: Cytokinin, delayed leaf senescence, drought inducible, CML216, ipt gene.

Akiyoshi DE, Klee H, Gordon MP (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of CK biosynthesis. PNAS 81(19):5994-5998.
Crossref

 

Allen GC, Vergara FMA, Krasnyanski S, Kumar S, Thompson WF (2006). A modified protocol for rapid DNA isolation from plant tissue using cetyltrimethylammonium bromide. Nat. Protoc. 1(5):2320-2325.
Crossref

 
 

Allison JCS, Watson DJ (1996). The production and distribution of dry matter in maize after flowering. Ann. Bot. 30:365-381.

 
 

Ash F, Andersen MN, Jensen CR, Mogensen VO (2001). Ovary abscisic acid concentration does not induce kernel abortion in field-grown maize subjected to drought. Eur. J. Agron. 15:119-129.
Crossref

 
 

Bänziger M, Edmeades GO, Beck D, Bellon M (2000). Breeding for drought and nitrogen stress tolerance in maize: From Theory to Practice. Mexico, D.F.: CIMMYT.

 
 

Battisti DS, Naylor RL (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240-244.
Crossref

 
 

Bola-os J, Edmeades GO (1993). Eight cycles of selection for drought tolerance in tropical maize. I. Responses in grain yield, biomass and radiation interception. Field Crops Res. 31:233-252.
Crossref

 
 

Buchanan-Wollaston V (1997). The molecular biology of leaf senescence. J. Exp. Bot. 48(307):181-199.
Crossref

 
 

Dastane NG (1967). A practical manual for water use research in agriculture. Indian Agricultural Research Institute, New Delhi. (Navabharat Prakashans, 759 Deccan Gymkhana, Poona 4).

 
 

Edmeades GO, Bola-os J (1993). Eight cycles of selection for drought tolerance in tropical maize. I. Responses in grain yield, biomass and radiation interception. Field Crops Res. 31:233-252.
Crossref

 
 

Edmeades GO, Bola-os J, Chapman SC, Lafitte HR, Bänziger M (1999). Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 39:1306-1315.
Crossref

 
 

Edmeades GO, Bola-os J, Hernandez M, Bello S (1993). Causes for silk delay in lowland tropical maize. Crop Sci. 33:1029-1035.
Crossref

 
 

Edmeades GO, Chapman SC, Bola-os J, Bänziger M, Lafitte HR (1994). Recent evaluation of progress in selection for drought tolerance in tropical maize. Proceedings of the Eastern and South African Maize Conference. Paper presented at the Fourth Eastern, Central and Southern African regional maize conference, Harare, Zimbabwe, 28 March-1 April, 1994.

 
 

Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006). Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J. Cereal Sci. 43:31-37.
Crossref

 
 

Gadaleta A, Giancaspro A, Blechl A, Blanco A (2008). A transgenic durum wheat line that is free of marker genes and expresses 1Dy1. J. Cereal Sci. 48:439-445.
Crossref

 
 

Gan S, Amasino RM (1996). Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18(7):557-565.
Crossref

 
 

Gan S, Amasino RM (1997). Making sense of senescence: molecular genetic regulation of leaf senescence. Plant Physiol. 113:313-319.
Crossref

 
 

Grabau LJ (1995). Physiological Mechanisms of Plant Senescence. In. Pessarakli, M. (ed.). Hand book of Plant and Crop Physiology. Marcel Dekker, New York.

 
 

Gummuluru S, Hobbs SLA, Jana S (1989). Physiological responses of drought tolerant and drought susceptible durum wheat genotypes. Photosynthetica 23:479-485.

 
 

Gungula DT, Togun AO, Kling JG (2005). The influence of N rates on maize leaf number and senescence in Nigeria. World J. Agric. Sci. 1(1):1-5.

 
 

Hajouj T, Michelis R, Gepstein S, (2000). Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol. 124:1305-1314.
Crossref

 
 

Hardy A (2010). Candidate stress response genes for developing commercial drought tolerant crops. Basic Biotechnol. 6:54-58.

 
 

Heisey PW, Edmeades GO (1999). Maize production in drought-stressed environments: Technical options and research resource allocation. CIMMYT World Maize Facts and Trend 1997/1998: Mexico, D.F.

 
 

Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998). Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111-117.
Crossref

 
 

Jones PG, Thornton PK (2003). The potential impact of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Change 13:51-59.
Crossref

 
 

Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, de Visser R, van Rhijn JA, Gan S, Amasino R M (2000). Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23:279-289.
Crossref

 
 

Larkin PJ, Scowcroft WR (1981). Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197-214.
Crossref

 
 

Lichtenthaler HK, Wellburn AR, (1983). Determination of total carotenoids and chlorophyll A and B of leaf in different solvents. Biochem. Soc. Trans. 11:591-592.
Crossref

 
 

Lindsey K, Gallois P (1990). Transformation of sugar beet (Beta vulgaris L.) by Agrobacterium tumefaciens. J. Exp. Bot. 41:529-536.
Crossref

 
 

Linsmaier E, Skoog F (1965). Organic growth factor requirements of tobacco tissue culture. Plant Physiol. 18:100-127.
Crossref

 
 

Liu F, Jensen CR, Andersen MN (2005). A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Crop Pasture Sci. 56(11):1245-1252.
Crossref

 
 

McKenzie MJ, Mett V, Reynolds PHS, Jameson PE (1998). Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol. 116: 969-977.
Crossref

 
 

Medford, JI, Horgan R, El-Sawi Z, Klee H J (1989). Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyltransferase gene. Plant Cell 1:403-413.
Crossref

 
 

Munné-Bosch S, Schwarz K, Alegre L (1999). Enhanced formation of α-tecopherols and highly oxidized abietane diterpenes in water stressed Rosemary plants. Plant Physiol. 121:1047-1052.
Crossref

 
 

Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 15:473-497.
Crossref

 
 

Negrotto D, Jolley M, Beer S, Wenck AR., Hansen G (2000). The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798-803.
Crossref

 
 

Nigussie M, Mohammed H, Seboksa G, Bogale G, Beyene Y, Hailemichael S, Hadis A (2002). Maize improvement for drought stressed areas of Ethiopia. Proceedings of the Second National Maize Workshop of Ethiopia.

 
 

Oneto CD, Otegui ME, Baroli I, Bezbec A, Faccio P, Bossio E, Blumwald E, Lewi D (2016).Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J. Biotechnol. 220:66-77.
Crossref

 
 

Otegui ME, Andrade FH, Suero EE (1995). Growth, water use and kernel abortion of maize subjected to drought at silking. Field Crops Res. 40:87-94.
Crossref

 
 

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011). Cytokinin-mediated source⁄sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 1-2.
Crossref

 
 

Pospíšilová J, Vágner M, Malbeck J, Trávníčková A, Baťková P (2005). Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol. Plant. 49(4):533-540.
Crossref

 
 

Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C, Chang YF (2001). Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev. Biol. Plant 37:127-132.
Crossref

 
 

Rivero RM, Shulaev V, Blumwald, E (2009). Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. (150):1530-1540.
Crossref

 
 

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS 104(49):19631-19636.
Crossref

 
 

Robson PRH, Iain S, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004). Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence enhanced promoter. Plant Biotechnol. J. 2:101-112.
Crossref

 
 

Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York.

 
 

Schmülling T, Beinsberger S, De Greef J, Schell J, Van Onckelen H, Spena A (1989). Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett. 249:401-406.
Crossref

 
 

Seth MS, Bedada LT, Mneney EE, Oduor RO, Machuka JS. (2012). In vitro regeneration of selected commercial Tanzanian open pollinated maize varieties. Afr. J. Biotechnol. 11(22):6043-6049.

 
 

Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sci. 3:307-327.
Crossref

 
 

Smart CM, Scofield SR, Bevan MW, Dyer TA (1991). Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3:647-656.
Crossref

 
 

Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001). Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20:429-436.
Crossref

 
 

Young TE, Giesler-Lee J, Gallie DR (2004). Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant Biotechnol. J. 38(6):910-922.
Crossref

 

 


APA Bedada, L. T., Seth, M. S., Runo, S. M., Teffera, W., Mugoya, C., Masiga, C. W., Oduor, R. O., Blumewald, E., & Wachira, F. (2016). Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene. African Journal of Biotechnology , 15(43), 2447-2464.
Chicago Leta Tulu Bedada, Miccah Songelael Seth, Steven Maina Runo, Wondyifraw Teffera, Charless Mugoya, Clet Wandui Masiga, Richard Okoth Oduor, Eduardo Blumewald and Francis Wachira. "Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene." African Journal of Biotechnology 15, no. 43 (2016): 2447-2464.
MLA Leta Tulu Bedada, et al. "Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene." African Journal of Biotechnology 15.43 (2016): 2447-2464.
   
DOI 10.5897/AJB2016.15228
URL http://www.academicjournals.org/journal/AJB/article-abstract/FDDCDB061322

Subscription Form