African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - 4D4F8E363216


Vol.16(12), pp. 558-572 , March 2017
DOI: 10.5897/AJB2016.15424
ISSN: 1684-5315



Full Length Research Paper

PCR validation of predicted virulence factors in a collection of Xanthomonas campestris (pv. musacearum and vascolurum) strains



Arthur Wasukira*
  • Arthur Wasukira*
  • College of Agricultural and Environmental Sciences, Makerere University, Uganda P. O. Box 7062, Kampala, Uganda.
  • Google Scholar
Geoffrey Tusiime
  • Geoffrey Tusiime
  • Buginyanya Zonal Agricultural Research and Development Institute, P. O. Box 1356, Mbale, Uganda.
  • Google Scholar
Jerome Kubiriba
  • Jerome Kubiriba
  • Buginyanya Zonal Agricultural Research and Development Institute, P. O. Box 1356, Mbale, Uganda.
  • Google Scholar







 Received: 20 April 2016  Accepted: 27 January 2017  Published: 22 March 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Bacterial plant pathogens belonging to the Xanthomonas genus are adapted to their host plants and are not known to colonize other environments. Xanthomonas colonize host parts such as leaves, stems and roots before entering vascular tissues and engaging in an invasive pathogenic phase. These bacterial strains have evolved strategies to adapt to life in this environment. The host-pathogen interactions of Xanthomonas vasicola (Xv) need to be well understood to properly map the target genes in the host and pathogen so as to understand the mechanism of resistance. Genotypic characterization, based on the analysis of restriction fragment length polymorphism of virulence factor fragment products was performed on members of the X. vasicola pv. musacearum (Xcm) and X. vasicola pv. vasculorum (Xvv) from varying geographical locations. The study showed that Xcm and Xvv are different from each other based on amplification of virulence factors within fragments of their DNA. Bacterial strains of similar species can have unique Type four pili (Tfp) and Tfp pilus assembly protein PilF a fimbrial biogenesis protein was amplified in all Xanthomonas strains except NCPPB1131 only. Type III effector protein RipT was confirmed to be present in all strains of Xcm and Xvv but not NCPPB1131 and NCPPB1132. All the Xcm and Xvv strains under test yielded bands of type III effector HopAF1 except Xvv206, NCPPB1131 and NCPPB1132. YopJ type III secretion system effector protein hybridizes in DNA of all Xcm strains tested but not in NCPPB1131 or NCPPB1132. This study confirmed the predicted presence or absence of virulence factors especially effectors across bacterial strains and within strains of the same species and other clusters conserved in gram negative bacteria.

Key words: Banana, effectors, pathogen-host, Xanthomonas wilt, Xanthomonas campestris, Xanthomonas vasicola.

Ali A, Soares SC, Barbosa E, Santos AR, Barh D, Bakhtiar SM, David W (2013). Bacteriology & Parasitology Microbial Comparative Genomics : An Overview of Tools and Insights Into The Genus Corynebacterium. J. Bacteriol. Parasitol. 4(2):1.
Crossref

 

Aritua V, Parkinson N, Thwaites R, Heeney JV, Jones DR, Tushemereirwe W, Smith J (2008). Characterization of the Xanthomonas sp . causing wilt of enset and banana and its proposed reclassification as a strain of X . vasicola. Plant Pathol. 57:170-177.

 

Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS (2011). Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLoS Pathog. 7(7):e1002132.
Crossref

 

Buttner D, He SY (2009). Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiol. 150:1656-1664.
Crossref

 

Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS (2011). Structural Analysis and Involvement in Plant Innate Immunity of Xanthomonas axonopodis pv. citri Lipopolysaccharide. J. Biol. Chem. 286:25628-25643.
Crossref

 

Coburn B, Sekirov I, Finlay BB (2007). Type III secretion systems and disease. Clin. Microbiol. Rev. 20(4):535-549.
Crossref

 

Costa TRD, Felisberto-rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015). Secretion systems in Gram-negative insights. Nat. Pub. Group 13(6):343-359.

 

da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita M A, Tamura RE, Teixeira EC, Tezza RID, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459-463.
Crossref

 

Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N (2006). Bacterial Lipopolysaccharides Induce Defense Responses Associated with Programmed Cell Death in Rice Cells. Pla. Cell Physiol. 47(11):1530-1540.
Crossref

 

Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS (2014). Xanthomonas citri subsp. citri Type IV Pilus Is Required for Twitching Motility, Biofilm Development, and Adherence. Mol. Plant Microbe Interact. 27(10):1132-1147.
Crossref

 

Giltner CL, Nguyen Y, Burrows LL (2012). Type IV pilin proteins: Versatile molecular modules. Microbiol. Mol. Biol. Rev. 76(4):740-772.
Crossref

 

Jalan N, Kumar D, Andrade MO Yu F, Jones JB, Graham JH., White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp . citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14(1):551.
Crossref

 

Koressaar T, Remm M (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289-1291.
Crossref

 

Kubiriba J, Karamura EB, Tushemereirwe WK, Tinzaara W (2012). Community mobilization : A key to effective control of banana xanthomonas wilt. J. Dev. Agric. Econ. 4(5):125-131.
Crossref

 

Kvitko BH, Park DH, Velásquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A (2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog. 5(4):e1000388.
Crossref

 

Mahuku GS (2004). A simple extraction method suitable for PCR ¬ based analysis of plant, fungal, and bacterial DNA. Plant Mol. Biol. Rep. 22(1):71-81.
Crossref

 

Mhedbi-Hajri N, Darrasse A, Pigné S, Durand K, Fouteau S, Barbe V, Manceau C, Lemaire C, Jacques MA (2011). Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evol. Biol. 11(1):67.
Crossref

 

Mohammed A (2015). Importance and Characterization of Coffee Berry Disease (Colletotrichum kahawae) in Borena and Guji Zones, Southern Ethiopia. J. Plant Pathol. Microbiol. 6(9):1-6.
Crossref

 

Munford RS, Varley AW (2006). Shield as Signal: Lipopolysaccharides and the Evolution of Immunity to Gram-Negative Bacteria. PLoS Pathog. 2(6):e67.
Crossref

 

Nam J (2001). New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant. J. Plant Pathol. Microbiol. 17(2):83-87.

 

Newman MA, von Roepenack E, Daniels M, Dow M (2000). Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1(1):25-31.
Crossref

 

Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C (2006). Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. PNAS 103:14620-14625.
Crossref

 

Orth K, Xu Z, Mudgett M B, Bao Z Q, Palmer E L, Bliska J B, Mangel F W, Staskawicz B, Dixon E J. (2000). Homologs Disruption of Signaling by Yersinia Effector YopJ, a Ubiquitin-Like Protein Protease. Science, 290;1594-1597.
Crossref

 

Pizarro-Cerda J, Cossart P (2006). Bacterial Adhesion and Entry into Host Cells. Cell 124:715-727.
Crossref

 

Qian W, Jia Y, Ren S, He Y, Feng J, Lu L, Sun Q, Ying G, Tang D, Jie T, Hua W, Wei H, Pei W, Lifeng J, Bo L, Zeng S, Gu W, Yi L, Gang R, Li T, Yingchuan Y, Zhijian F, Gang C, Baoshan F, Rongxiang Q, Boqin C, Zhu Z, Guo PT, Ji L, He C (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv . campestris. Genome Res. 15(6):757-767.
Crossref

 

Sluys MA, Camargo LEA, Menck CFM, Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002). Comparative Genomic Analysis of Plant Associated Bacteria. Ann. Rev. Phytopathol. 40:169-189.
Crossref

 

Ssekiwoko F, Tushemereirwe WK, Batte M, Ragama P, Komakech A (2006). Reaction of Banana Germplasm to innoculation with Xanthomonas campestris pv. musacearum. Afr. Crop Sci. J. 14(2):151-155.

 

Studholme DJ, Kemen E, Maclean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JDG (2010). Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol. Lett. 310:182-192.
Crossref

 

Studholme DJ, Wasukira A, Paszkiewicz K, Aritua V (2011). Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade. Genes 2(4):1050-1065.
Crossref

 

Todar K (2014). Colonization and Invasion by Bacterial Pathogens. Text Book of Bacteriology. pp. 3-5.

 

Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010). Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol. Plant Pathol. 11(6):721-731.
Crossref

 

Tripathi L, Tripathi JN (2009). Relative susceptibility of banana cultivars to Xanthomonas campestris pv. musacearum. Afr. J. Biotechnol. 8(20):5343-5350.

 

Tushemereirwe WK, Kangire A, Kubiriba J, Maureen N, Gold SC (2004). Diseases threatening banana biodiversity in Uganda. Afr. Crop. Sci. J. 12(1):19-26.
Crossref

 

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012). Primer3-new capabilities and interfaces. Nucleic Acids Res. 40(15):1-12.
Crossref

 

Volk W (1966). Cell wall lipopolysaccharides from xanthomonas species. J. Bacteriol. 91(1):39-42.

 

Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ (2014). Genome Sequencing of Xanthomonas vasicola pv. vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors. Pathogens 3(1):211-237.
Crossref

 

Wasukira A, Tayebwa J, Thwaites R, Paszkiewicz K, Aritua V, Kubiriba J, Smith J, Grant M, Studholme DJ (2012). Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen Xanthomonas campestris pv. musacearum. Genes 3(3):361-377.
Crossref

 

White FF, Chittoor JM, Leach JE, Young SA, Zhu W (1996). Molecular analysis of the interaction between Xanthomonas oryzae pv . oryzae and rice. In Rice genetics III. Proceedings of the Third International Rice Genetics Symposium, 16-20 Oct 1995. Manila (Philippines): IRRI. pp. 255-266.

 


APA Wasukira, A., Tusiime, G., & Kubiriba, J. (2017). PCR validation of predicted virulence factors in a collection of Xanthomonas campestris (pv. musacearum and vascolurum) strains. African Journal of Biotechnology , 16(12), 558-572.
Chicago Arthur Wasukira, Geoffrey Tusiime and Jerome Kubiriba. "PCR validation of predicted virulence factors in a collection of Xanthomonas campestris (pv. musacearum and vascolurum) strains." African Journal of Biotechnology 16, no. 12 (2017): 558-572.
MLA Arthur Wasukira, Geoffrey Tusiime and Jerome Kubiriba. "PCR validation of predicted virulence factors in a collection of Xanthomonas campestris (pv. musacearum and vascolurum) strains." African Journal of Biotechnology 16.12 (2017): 558-572.
   
DOI 10.5897/AJB2016.15424
URL http://www.academicjournals.org/journal/AJB/article-abstract/4D4F8E363216

Subscription Form