African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - 10EFE6E65809


Vol.16(35), pp. 1800-1809 , August 2017
DOI: 10.5897/AJB2017.15888
ISSN: 1684-5315



Full Length Research Paper

Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29



Paulo M. A. Neto
  • Paulo M. A. Neto
  • Department of Biochemistry and Microbiology, Biosciences Institute of Rio Claro, Univ. Estadual Paulista – UNESP, SP, Brazil.
  • Google Scholar
Lorenzo E. R. P. P. L. D. B. Briganti
  • Lorenzo E. R. P. P. L. D. B. Briganti
  • Department of Biochemistry and Microbiology, Biosciences Institute of Rio Claro, Univ. Estadual Paulista – UNESP, SP, Brazil.
  • Google Scholar
Donovan Layton
  • Donovan Layton
  • Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN, USA.
  • Google Scholar
Michael Wierzbicki
  • Michael Wierzbicki
  • Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN, USA.
  • Google Scholar
R. Adam Thompson
  • R. Adam Thompson
  • Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN, USA.
  • Google Scholar
Henrique Ferreira
  • Henrique Ferreira
  • Department of Biochemistry and Microbiology, Biosciences Institute of Rio Claro, Univ. Estadual Paulista – UNESP, SP, Brazil.
  • Google Scholar
Jonas Contiero
  • Jonas Contiero
  • Department of Biochemistry and Microbiology, Biosciences Institute of Rio Claro, Univ. Estadual Paulista – UNESP, SP, Brazil.
  • Google Scholar







 Received: 11 January 2017  Accepted: 09 June 2017  Published: 30 August 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


1,3-Propanediol (1,3-PDO) is a bifunctional molecule, and used in applications similar to those of ethylene glycol, propylene glycol, 1,3-butanediol and 1,4-butanediol. The use of glycerol as a feedstock is an alternative to reduce production costs for both 1,3-PDO and biodiesel, since biodiesel glycerol can be used for the production of 1,3-PDO by bacteria. Also, using metabolic engineering, it is possible to manipulate the metabolic routes and obtain high value products, reduce or eliminate the formation of undesirable byproducts. The aim of the study was to produce 1,3-propanediol in E. coli cloned with dha genes from Klebsiella pneumoniae GLC29. Six genes responsible for 1,3-PDO production in Klebsiella pneumoniae GLC29 were cloned. These genes were assembled in pSB1C3 as an expression vector: Genes dhaB1, dhaB2, dhaB3 and dhaT (pSB1C3dhaB123T), and another vector with genes dhaF and dhaG (pSB1C3dhaB123TFG) were derived using Gibson's Assembly technique. Escherichia coli TCS099 and SZ63 stains were used as hosts for 1,3-PDO production, and kept at -80°C for long-term storage. Glycerol was used as the sole or main carbon source in all experiments. Fermentations were performed in flasks in aerobic and anaerobic conditions using minimal media. Also, two stage fermentation (aerobic-anaerobic) was performed for 1,3-propanediol production. Only pSB1C3dhaB123TFG was able to produce high amounts of 1,3-PDO in shake flasks experiments, producing 2.5 g/L in micro-aerobic conditions, using E. coli TCS099 as host. Besides, E. coli SZ63 hosting pSB1C3dhaB123TFG was able to produce high amounts of 1,3-PDO, corresponding to 11.3 g/L of 1,3-PDO using a two-stage fermentation process using low concentration of vitamin B12 (1 mg/L). Plasmid pSB1C3dhaB123TFG shows potential for producing high amounts of 1,3-PDO, specially because of dhaF and dhaG, reaffirming the importance of this genes on 1,3-PDO production, especially with the addition of low amounts of vitamin B12, which is an expensive compound.

Key words: 1,3-Propanediol, Escherichia coli, glycerol, Klebsiella pneumoniae, metabolic engineering.

Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008). Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10(6):305-311.
Crossref

 

Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999). Microbial production of 1,3-propanediol. App. Microbio. Biotechnol. 52:289-297.
Crossref

 
 

Cameron DC, Altaras NE, Hoffman ML, Shaw A J (1998). Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14(1):116-125.
Crossref

 
 

Cheng K-K, Liu H-J, Liu D-H (2005). Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol. Lett. 27(1):19-22.
Crossref

 
 

Da Silva GP, de Lima CJB, Contiero J (2014). Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal. Today 257(2):259-266.

 
 

Gallardo R, Alves M, Rodrigues LR (2014). Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass Bioenergy 71:134-143.
Crossref

 
 

Gibson DG, Young L, Chuang R, Venter JC, Iii CAH, Smith HO, America N (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6:343-345.
Crossref

 
 

Gonzalez R (2012). Anaerobic Fermentation of Glycerol. WO Pat. 2,007,115,228.

 
 

Kaur G, Srivastava AK, Chand S (2012). Advances in biotechnological production of 1,3-propanediol. Biochem. Eng. J. 64:106-118.
Crossref

 
 

Lin E (1976). Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30:535-578.
Crossref

 
 

Ma Z, Rao Z, Xu L, Liao X, Fang H (2009). Production of 1, 3-propanediol from glycerol by engineered using a novel coexpression vector. Afr. J. Biotechnol. 8(20):5500-5505.

 
 

Maervoet VET, De Mey M, Beauprez J, De Maeseneire S, Soetaert WK (2011). Enhancing the Microbial Conversion of Glycerol to 1,3-Propanediol Using Metabolic Engineering. Org. Process Res. Dev. 15(1):189-202.
Crossref

 
 

Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Son JH, Park DH, Kim CH (2012). Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by-product formation. Bioprocess Biosyst. Eng. 35:159-165.
Crossref

 
 

Papanikolaou S, Aggelis G (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol. 21(4):83-87.
Crossref

 
 

Pyne M (2014). Development of genetic tools for metabolic engineering of Clostridium pasteurianum. University of Waterloo.

 
 

Quispe CAG, Coronado CJR, Carvalho Jr. JA (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27:475-493.
Crossref

 
 

Rymowicz W, Rywińska A, Żarowska B, Juszczyk P (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem. Pap. 60(5):391-394.

 
 

Skraly FA, Lytle BL, Cameron DC (1998). Construction and characterization of a 1,3-propanediol operon. Appl. Environ. Microbiol. 64(1):98-105.

 
 

Song Y, Xu Y, Liu D (2010). 1,2 and 1,3 Propanediol, Microbial Production Methods. Encyclopedia of Industrial Biotechnology. 1:1-16.

 
 

Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009). Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl. Environ. Microbiol. 75(6):1628-1634.
Crossref

 
 

Tong T, Liao H H, Cameron D (1991). 1,3-Propanediol Production by Escherichia coli Expressing Genes from the Klebsiella pneumoniae dha Regulon. Appl. Environ. Microbiol. 57(12):3541-3546

 
 

Trinh CT, Srienc F (2009). Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 75(21):6696-6705.
Crossref

 
 

Yazdani SS, Gonzalez R (2007). Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18(3):213-219.
Crossref

 
 

Zhang X, Li Y, Zhuge B, Tang X, Shen W, Rao Z, Fang H, Zhuge J (2006). Construction of a novel recombinant Escherichia coli strain capable of producing 1,3–propanediol and optimization of fermentation parameters by statistical design. World J. Microbiol. Biotechnol. 22(9):945-952.
Crossref

 
 

Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003). Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl. Environ. Microbiol. 69(1):399-407.
Crossref

 

 


APA Neto, P. M. A., Briganti, L. E. R. P. P. L. D. B., Layton, D., Wierzbicki, M., Thompson, R. A., Ferreira, H., & Contiero, J. (2017). Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29. African Journal of Biotechnology , 16(35), 1800-1809.
Chicago Paulo M. A. Neto, Lorenzo E. R. P. P. L. D. B. Briganti, Donovan Layton, Michael Wierzbicki, R. Adam Thompson, Henrique Ferreira and Jonas Contiero. "Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29." African Journal of Biotechnology 16, no. 35 (2017): 1800-1809.
MLA Paulo M. A. Neto, et al. "Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29." African Journal of Biotechnology 16.35 (2017): 1800-1809.
   
DOI 10.5897/AJB2017.15888
URL http://www.academicjournals.org/journal/AJB/article-abstract/10EFE6E65809

Subscription Form