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The improved Riccati equation method combined with the improved ( / )G G - expansion method is an 

interesting approach to find more general exact solutions of the nonlinear evolution equations in 
mathematical physics. The objective of this article is to employ this method to construct exact 
solutions involving parameters of a nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation. When 
these parameters are taken to be special values, the solitary wave solutions, the periodic wave 
solutions and the rational function solutions are derived from the exact solutions. The proposed 
method appears to be effective for solving other nonlinear evolution equations in the mathematical 
physics. 
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INTRODUCTION 
 
Many problems in the branches of modern physics are 
described in terms of suitable nonlinear models, and 
nonlinear physical phenomena are related to nonlinear 
differential equations, which are involved in many fields 
from physics to biology, chemistry, mechanics, and so on. 
Nonlinear wave phenomena are very important in 
nonlinear science, in recent years, much effort has been 
spent on the construction of exact solutions of nonlinear 
partial differential solutions. Many effective methods to 
construct the  exact  solutions  of  these  equations   have  

been established, such as, the inverse scattering 
transform method (Ablowitz and Clarkson, 1991), the 
Hirota method (Hirota, 1971), the truncated expansion 
method( Weiss et al., 1983), the Backlund transform 
method (Miura, 1979; Rogers and Shadwick, 1982), the 
exp-function method (He and Wu, 2006; Yusufoglu, 
2008), the tanh- function method (Fan, 2000; Zhang and 
Xia, 2008), the Jacobi elliptic function method (Chen and 
Wang, 2005; Lu, 2005), the ( )G G –expansion method 

(Wang and Zhang,  2008;  Feng  and  Wan,  2011;  Zayed 
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and Al-Joudi 2009; Zayed and Abdelaziz, 2010; Zayed 
and El-Malky, 2011), the modified simple equation 
(Jawad,et al .,2010; Zayed, 2011; Zayed and Hoda 
Ibrahim, 2012, Zayed and Hoda Ibrahim, 2014; Zayed 
and Arnous, 2012), the Riccati equation  method (Zhu, 
2008; Li and Zhang, 2010; Zayed and Arnous, 2013), the 
improved Riccati equation method ( Li, 2012), the method 
of averaging  (Leilei et al., 2014) and so on. The objective 
of this paper is to apply the improved Riccati equation 

method combined with the improved ( / )G G - expansion 

method to find the exact solutions of the following 
nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) 
equation: 
 

2 3 0,t xxu u u u u                                      (1) 

 

Where , ,   are real constants. Equation (1) is 

important in the physical fields, and includes the Fisher 
equation, the Huxley equation, the Burgers- Huxley 
equation, the Chaffee-Infanfe equation and the Fitzhugh-
Nagumo equation. Equation (1) has been investigated 

recently in (Feng and Wan, 2011) using the ( / )G G - 

expansion method and in (Zayed and Hoda Ibrahim, 
2014) using the modified simple equation method. The 
rest of this paper is organized as follows: First is a 
description of the improved Riccati equation method 

combined with the improved ( / )G G - expansion 

method. Next is application of this method to solve the 
nonlinear KPP equation (1). Thereafter, the physical 
explanations of the obtained results are given, and 
conclusions are obtained. 
 
 

Description of the Riccati equation method combined 

with the ( / )G G - expansion method 

 

Suppose that we have the following nonlinear evolution 
equation: 
 

( , , , , ,...) 0,t x tt xxF u u u u u                                                   (2) 

 

Where F  is a polynomial  in  u(x, t) and its partial 
derivatives, in which the highest order derivatives and the 
nonlinear terms, are involved. In the following, we give 
the main steps of the Riccati equation method combined 

with the ( / )G G - expansion method (Li, 2012): 

 

Step 1. We use the traveling wave transformation  
 

( , ) ( ), ,u x t u kx t                                                    (3) 

 

Where ,k   are constants, to reduce Equation (1) to the 

following ordinary differential equation (ODE): 
 

( , , ,...) 0,P u u u                                                   (4) 
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Where P is a polynomial in ( )u   and its total derivatives, 

while the dashes denote the derivatives with respect 

to  . 

 
Step 2. We assumes that Equation (4)  has the formal 
solution: 
 

( ) [ ( )] ,
n

i

i

i n

u f  


                                      (5) 

 

Where ( ,..., )i i n n    are constants to be 

determined later 0 0n nor   , while ( )f   

satisfies the generalized Riccati equation: 
 

2( ) ( ) ( ),f p rf qf                                                  (6) 

 

Where p, r and q are real constants, such that 0q  and 

( )f  will be determined in the Step 4  below. 

 
Step 3. The positive integer n  in Equation (5) can be 
determined by balancing the highest-order derivatives 
with the nonlinear terms appearing in Equation (4).  
 

Step 4. We determine the solutions ( )f   of Equation 

(6) using the improved ( / )G G -expansion method, by 

assuming that its formal solution has the form  
 

( )
( ) ,

( )

i
m

i

i m

G
f

G


 



 
  

 
                                     (7) 

 

Where ( ,..., )i i m m    are constants to be 

determined later 0 0m mor   , and ( )G   

satisfies the following linear ODE: 

 

( ) ( ) ( ) 0,G G G                                            (8) 

 

Where   and  are constants.  

 
Step 5. The positive integer m in Equation (7) can be 

determined by balancing ( )f   and 
2 ( )f   in Equation 

(6) to get 1m  . Thus, the solution (7)  reduces to.  
 

1

0 1 1

( ) ( )
( ) ,

( ) ( )

G G
f

G G

 
   

 





    
     

   

                      (9) 

 

Where 0 1 1, ,    are constants to be determined,such 

that 1 10 0or   . Substituting Equation (9) along 
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with Equation (8) into Equation (6) and equating all the 

coefficients of powers of 
G

G

 
 
 

 to zero, yields a set of 

algebraic equations, which can be solved to get the 
following two cases: 
 
 
Case 1 
 

2 2

0 1 1

( ) 1 4
, , 0, , 0.

2 4

r r
p q

q q q

  
  

    
      

 
In this case, the solution of Equation (6) has the form 
 

( ) 1 ( )
( ) .

2 ( )

r G
f

q q G

 




  
   

 

                                  (10) 

 
 
Case 2  
 

2 2

0 1 1

4
, 0, , , 0.

2 4

r r
p q

q q q

   
  

  
      

 
In this case, the solution of Equation (6) has the form 
 

1

( )
( ) .

2 ( )

r G
f

q q G

  





 

   
 

                                  (11) 

 
From the Cases 1 and 2, we deduce that 

2 24 4 .r pq     On solving Equation (8) we deduce 

that ( '/ )G G  has the forms: 

 
 

   
   

   
   

2 2
2

1 22 2
2

2 2

1 22 2

2 2
2

1 22 2
2

2 2

1 22 2

2

sinh 4 cosh 44
4 0 (12)

2 2 cosh 4 sinh 4

sin 4 cos 44( )
4 0 (13)

( ) 2 2 cos 4 sin 4

2

c r pq c r pqr pq
if r pq

c r pq c r pq

c pq r c pq rpq rG
if r pq

G c pq r c pq r

c

c

 

 

 

 



 





        
 

    

           
 

    

  2

1 2

4 0 (14)if r pq
c 













 




  

 
Where c1 and c2  are arbitrary constants. 
 
Step 6.  Substituting Equation (5) along Equation (6) into 
Equation (4) and equating the coefficients of all powers of 

( )f   to zero, we obtain a system of algebraic equations, 

which can be solved using the Maple or Mathematica to 

get the values of ,i k  and  .\ 

 

Step 7.  Substituting the values of  ,i k  and   as well 

as  the  solutions   ( )f     given   by   Equation   (10)    or   

 
 
 
 
Equation (11) into Equation (5), we finally obtain the exact 

solutions of Equation (2) for  the  both Cases 1 and 2. 

 
 
An application 
 
Here we apply the proposed method just described to 
construct the exact solutions of the nonlinear KPP 
Equation (1). To the end, we use the wave transformation 
(3) to reduce Equation (1) to the following ODE: 
 

2 2 3( ) ( ) ( ) ( ) ( ) 0.u k u u u u                            (15) 

 

By balancing 
3u with u , we have 1n  .  

Consequently, we have the formal solution  
 

1

0 1 1( ) ( ) ( ),u f f     

   (16) 

 

Where 0 1 1, ,   are parameters to be determined later, 

such that 1 0   or 1 0  . 

Substituting Equation (16) along with Equation (6) into 
Equation (15) and equating the coefficients of all powers 

of ( )f   to zero, we get the following system of 

algebraic equations: 
 

3 2 2 3

1 1

2 2 2 2

1 1 1 0 1

2 2 2 2

1 1 1 1 0 1 0 1 1 1

: 2 0,

: 3 3 0,

: ( 2 ) 2 (3 3 ) 0,

f k q

f q rqk

f r k r pq

 

     

          

  

   

      

 

 
0 2 2 3

1 1 1 1 0 0 1 1 0 0 1 1

3 2 2 3

1 1

2 2 2 2

1 1 1 0 1

1 2 2 2 2

1 1 1 1 0 1 0 1 1 1

: ( ) ( ) ( 2 ) ( 6 ) 0,

: 2 0,

: 3 3 0,

: ( 2 ) 2 (3 3 ) 0.

f p q k rp r q

f k p

f p rpk

f r k r pq

              

 

     

          

   



 



   



      

        

  

    

       

    
 
By solving the above algebraic equations with the aid of 
Maple or Mathematical, we have the following results: 
 
Result 1  
 

   

 

2 2

2

2 2 2 2 2 2

2

0

2 2 2
2

1 1 02

0

( 4 )
,

4

2 ( 4 ) ( 4 ) 4 ( 2 ) 4
,

4 ( 4 )

( 2 ) 4 4
0, , .

2

k r pq

r pq

k r pq r pq r r pq r pq r r pq

pq r pq

k r pq r r pq r r pq

q









   







    


     
   





 






 



 

 

provided  that  
2 4 0r pq  . 



 
 
 
 
Now, the solution for  the result 1  becomes 

 

1

0

2

0

4
( ) )

2
( ,

r r pq

q
u f  

 
  
 
 

                          (17) 

Where  

 
2 2

2

( 4 )
.

4

k r pq

r p
k

q
x t




 
  
  

                                (18) 

 
Substituting Equation (10) into Equation (17) and using 
Equations (12) to (14) we have the hyperbolic wave 
solutions of Equation (1) as follows: 

 

 
   
   

1
2 2

1 22 2
2

0
2 2

1 22

2

0

2

sinh 4 cosh 4
( ) 4 .

co
4

sh 4 sinh 4

c r pq c r pq
u r r pq

c r pq c r pq
r r pq

 

 
  



    
       

      

 

   (19) 

 
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (19), we have respectively 
the following  exact solutions for Equation (1): 
 

(i) If 1 2c c , then 

    2

0

1
2 2

1 0 1 2 12
( ) 4 tanh 4 sgn4 ( )u r r pqr r r pq cpq c

  


    
    (20)    

 

Where   
21

1

1

tanh .
c

c
 

 
   

 
      

 

(ii) If 2 1 0,c c   then 

    2

0

1
2 2

2 0 1 2 22
( ) 4 coth 4 sgn4 ( )u r r pqr r r pq cpq c

  


        (21)     

 

Where   21

2

1

coth .
c

c
 

 
   

 

  

 

(iii) If 2 1 0,c c   then 

    2

0

1
2 2

3 0 2
( ) 4 coth ,4 4u r r pq qr p q pr r

  


         (22)                         

 

(iv) If 1 2 ,c c  then we have the trivial solution which is 

rejected. 
 
Substituting Equation (11) into Equation (17) and using 
Equations (12) to (14) we have the hyperbolic wave 
solutions of Equation (1) as follows: 

 

 
   
   

2 2

1 22 2

2 2

1 22 2

1
1

2
0

2
0

sinh 4 cosh 4
.

cosh 4 sinh 4
( ) 44 4

c r pq c r pq

c r pq c r pq
r r pqu r r pq

 

 
   


         

   
         

       

   (23)  
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Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (23), we have respectively 
the following exact solutions for Equation (1): 
 

(i) If 1 2c c , then 

   
1

1
2 2

4 0 1 2 12

2

0( ) 4 4 tanh 4 sg4 n( )u r r pq r pq cr r pq c
     


               

  (24)    

 

Where   
21

1

1

tanh .
c

c
 

 
   

 
 

 

(ii) If 2 1 0,c c   then 

   
1

1
2 2

5 0 1 2 22

2

0( ) 4 4 coth 4 sg4 n( )u r r pq r pq cr r pq c
     


               

  (25)      

 

Where   
21

2

1

coth .
c

c
 

 
   

 
 

 

(iii) If 2 1 0,c c  , then 

   
1

1
2 2

06

2

0 2
( ) 4 4 cot4 h 4 ,u r r pq rr r ppq q

    


             

 
    (26) 

 

(iv) If 2 1 ,c c  then 

 
1

1
2

7

2

00( ) 4 4 .4u r r pqr r pq    


           

 
           (27) 

 
 
Result 2.  Consider 
 

   

 

2 2

2

2 2 2 2 2 2

2

0

2 2 2
2

1 1 02

0

( 4 )
,

4

2 ( 4 ) ( 4 ) 4 ( 2 ) 4
,

4 ( 4 )

( 2 ) 4 4
0, , .

2

k r pq

r pq

k r pq r pq r r pq r pq r r pq

pq r pq

k r pq r r pq r r pq

q









   







    


  





  



 


 
  

 
 

 

 
Now, the solution for the result 2, becomes 
 

0

2

0

4

2
( ) ( )

r r pq
u f

q
 

 
  
 
 

 
,                  (28) 

 

Where 
2 2

2

4 )

4
.

(k r pq

r pq
kx t




 
  
  

                                                                                        

 
Substituting Equation (10) into Equation (28) and using 
Equations (12) to (14) we have the hyperbolic wave 
solutions of Equation (1) as follows: 



90            Sci. Res. Essays 
 
 
 

 
   
   

2 2

1 22 2
2

0 2
2 2

2

0

1 22

2
sinh 4 cosh 4

( ) 4
4 cosh 4 sinh 4

4
c r pq c r pq

u r r pq
q c r

r r
pq

p
c p

q
r q

 

 
 


    
       

    



 



   (29) 

 
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (29), we have respectively 

the following exact  solutions for Equation (1): 

 

(i) If 1 2c c , then 

    2 2

8 0 1 22

2

12

0( ) 4 tanh 4 sgn(4 )
4

u r r r pq r pqpq c
q

r c
  


      

,  (30)  

     

Where 
21

1

1

tanh .
c

c
 

 
   

 
 

 

(ii) If 2 1 0c c  , then 

    2 2

9 0 1 22

2

22

0( ) 4 coth 4 sgn(4 ) ,
4

u r r pq rr r p c c
q

q pq
  


     

 (31)  

 

Where 
21

2

1

coth .
c

c
 

 
   

 
 

 

(iii) If 2 1 0c c  , then 

    20 2 2

10 0 22
( ) 4 coth 4 ,

4
4r r pqu r r pq r pq

q


      

         (32)                   

 

(iv) If 2 1c c , then 

 11 0

2

2

0
2

( ) ,
4

4u
q

r r pq 


                          (33) 

 
Substituting Equation (11) into Equation (28) and using 
Equation (12) to (14) we have the hyperbolic wave 
solutions of Equation (1) as follows: 
 

 
   
   

1
2 2

1 22 2
2

0 2
2 2

1 2

20

2 2

sinh 4 cosh 4
( ) 4 4

4 cosh 4 sin
4

h 4

c r pq c r pq
u r r pq

q c
r r p

r pq c r pq
q

 

 
  


 

         
         

      



 





   (34) 

 
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (34), we have respectively 
the following exact  solutions for Equation (1): 
 

(i) If 1 2c c , then 

   
1

2 2

12 0

20
1 2 122

( ) 4 4 tanh 4 sg (4 n )
4

u r r pq r pqr r c c
q

pq
    




            


 




     (35)   

    

Where 
21

1

1

tanh .
c

c
 

 
   

 
 

 
 
 
 

(ii) If 2 1 0c c  , then 

   
1

2 2

13 0

20
1 2 222

( ) 4 4 coth 4 sg (4 n )
4

u r r pq r pqr r c c
q

pq
    




            


 




 (36)    

 

Where 
21

2

1

coth .
c

c
 

 
   

 
 

 

(iii) If 2 1 0c c  , then 

   20
1

2 2

14 0 22
( ) 4 4 coth 4

4
4u r r pq rr r pq pq

q

   



            

 


 (37) 

   

(iv) If 2 1 ,c c  then 

 
1

2

15 0 2

20( ) 4 4
4

4u r r pq
q

r r pq  


 
        

 
 



     (38) 

 
 
Result 3.  Consider 
 

  
 

 

2 2 2 2

1

0

2

1 2

2

0

2 2

2 2 2 2 2 2 2 2

2

2 2

0

,

,

( 2 ) ( 4 ) 2
0, ,

.
2

( 4 ) 2

( 2 ) ( 4 ) 2 ) ( 4 ) 2 ( 4 ) 2 )

2

( 4 ) 2

p

kp

k r pq rk k r pq

k pq

k k r pq

k r pq rk k r pq k r pq rk k r pq

k pq

kr k r pq






 
 











   







 



    
 






       







 



 
 
Now, the solution for the result 3 becomes 
 

 
2

0
1

2

0

2

2

( 4 )
(

2
) ( )

k

k p

p

q

kr k r pq
u f





  






 
 


       (39) 

 
Where 
 

 
2 2( 4 2 ,)k k rkx tpq      and        

2 2( 4 ) 2 0.k r pq                                              (40)           

 
Substituting Equation (10) into Equation (39) and using 
Equations (12) to (14) we have the exact solutions of 
Equation (1) as follows: 
 

 If  
2 4 0r pq  , we have the hyperbolic wave solutions 

 

     
   

2

1
2 2

2
1 22 2

0
2 2

1 22 2

2 2

0

2

sinh 4 cosh 44
( )

2 2 cosh 4 sinh 4

( 4 ) 2

k

p

pq

k c r pq c r pqr pqr
u

q q c r pq c r pq

kr k r pq  

 



 






  
  

  

  
   

    

  (41)   

                                                                                                                                  
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (41), we have respectively 
the following exact solutions for Equation (1): 



 
 
 
 

 (i) If 1 2c c , then 

 
 2

1
2

0
2

16 0 1 2 12

2 2

2

4
( ) tanh 4 sgn( )

( ) 2

2 2

4

k pq

kp r pqr
u r pq c c

q

kr r

q

k pq






  






   
     

  


 (42)   

    

Where   
21

1

1

tanh .
c

c
 

 
   

 
 

 

(ii) If 2 1 0c c  , then 

 
 2

1
2

0
2

17 0 1 2 22

2 2

2

4
( ) coth 4 sgn( )

( ) 2

2 2

4

k pq

kp r pqr
u r pq c c

q

kr r

q

k pq






  






   
     

  

    (43)  

 

Where   
21

2

1

coth .
c

c
 

 
   

 
 

 

(iii) If 2 1 0c c  , then 

 
 2

1
2

0

2

8 2

2

2

1 0
2

4
( ) coth 4 .

2

( 4 2

2

)kp

k pq

r pqr
u r

kr k r p

q

q
pq

q





 






   
    

  

    (44) 

 

(iv) If 2 1c c , then 

 
2

1
2

0

19 0

2 2

2

4
( ) .

2

4 ) 2

2

(

k p

kp

q

r pqr
u

q

kr k r pq

q




 






   
   

  

        (45)                       

 

 If  
2 4 0r pq  , we have the trigonometric wave 

solutions 
  

     
   

2

1
2 2

2
0 1 22 2

0
2 2

1 22

2

2

2

2

sin 4 cos 44
( )

2 2 cos 4 sin

4 )

4

( 2k

pq

p

k

c pq r c pq rpq rr
u

q q c pq r c p

kr k r pq

q r

 

 

 
 





            
   



 


        (46) 

 
Now, we can simplify Equation (46) to get the following 
periodic wave solutions: 
 

 
 2

1
2

0
2

2

0 0 1 2

2

2
2

4
( ) tan 4

2 2

( 4 ) 2

k

k

pq

p pq rrkr k r pq
u pq r

q q










 





   
     



  

 ,    (47)   

    

 Where
1 2

1

1

tan
c

c
   
  

 
, 

 
and 
 

 
 2

1
2

0
2

2

1 0 2 2

2

2
2

4
( ) cot 4

2 2

( 4 ) 2

k

k

pq

p pq rrkr k r pq
u pq r

q q










 





   
     



  

      (48)  

 

Where   
1 2

2

1

cot
c

c
   

  
 

. 
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 If 
2 4 0r pq  , we have the rational wave solutions      

 

 
2

1

0
2

22 0

1 22

1
)

2

2
(

k p

p

q

k cr
u

q q c

kr

c



 







   
    

   


,       (49) 

 
Where c1 , c2 are arbitrary constants.  
 
Substituting Equation (11) into Equation (39) and using 
Equations (12) to (14) we have the exact solutions of 
Equation (1) as follows: 
 

 If  
2 4 0r pq  , we have the hyperbolic wave solutions 

 

     
   

2

1
1

2 2
2

0 1 22 2

0
2 2

1 2 2

2

2

2

2

sinh 4 cosh 44
( )

2 2 2 cosh 4 sinh 4

( 4 ) 2

k p

kp

q

c r pq c r pqr pqr
u

q q c r p

kr k r p

r q

q

q c p

 

 

   










          
       

         



         (50) 

 
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (50), we have respectively 
the following  exact  solutions for Equation (1): 
 

(i) If 
1 2c c , then 

 
 2

1
1

2
0

2

23 0 1 2 12

2 2

2

4
( ) tanh 4 sgn( )

2

( ) 2

2

4

2

kp

k pq

r pqr
u

kr k r pq
r pq c c

q q






  
  








     
        

    


(51)     

  

 Where   
21

1

1

tanh .
c

c
 

 
   

 
 

 

(ii) If 
2 1 0c c  , then 

 
 2

1
1

2
0

2

24 0 1 2 22

2 2

2

4
( ) coth 4 sgn( )

2

( ) 2

2

4

2

kp

k pq

r pqr
u

kr k r pq
r pq c c
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(iii) If 2 1 0c c  , then 
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(iv) If 2 1 ,c c  then 
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 If  
2 4 0r pq  , we have the trigonometric wave 

solutions 
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Now, we can simplify Equation (55) to get the following 
periodic wave solutions: 
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 If 
2 4 0r pq  , we have the rational wave solutions  
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Where c1 , c2  are arbitrary constants.  
 
 
Result 4.  Consider 
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Now, the solution for the result 4 becomes 
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Where 
2 2( 4 ,) 2k k rkx tpq       and  

2 2( 4 ) 2 0.k r pq                                              (60) 

                   
Substituting Equation (10) into Equation (59) and using 
Equations (12) to(14) we have the exact solutions of 
Equation (1) as follows: 

 
 
 
 

 If  
2 4 0r pq  , we have the hyperbolic wave solutions 
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 (61)   

                                                                                                                           
Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (61), we have respectively 
the following exact solutions for Equation (1): 
 

 (i) If 1 2 ,c c  then 
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(ii) If 2 1 0,c c   then 
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(iii) If 2 1 0,c c   then 
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(iv) If 2 1 ,c c  then 
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  If  
2 4 0r pq  , we have the trigonometric wave 

solutions 
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 Now, we can simplify Equation (66) to get the following 
periodic wave solution: 
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If 
2 4 0r pq  , we have the rational wave solutions  
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Where  c1 , c2  are arbitrary constants.  
 
 Substituting Equation (11) into Equation (59) and using 
Equations (12) to (14) we have the exact solutions of 
Equation (1) as follows: 
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2 4 0r pq  , we have the hyperbolic wave solutions 
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Substituting the formulas (8), (10), (12) and (14) obtained 
by Peng (2009) into Equation (70), we have respectively 
the following exact solutions for Equation (1): 
 

(i) If 1 2 ,c c  then 
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(ii) If 2 1 0,c c   then 
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(iv) 2 1 ,c c  then 
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 If  
2 4 0r pq  , we have the trigonometric wave 

solutions 
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Now, we can simplify Equation (75) to get the following 
periodic wave solution: 
 

 
 

1
1

2

2

2 2

0

241 0 1 2

( 4 ) 4
( ) tan 4

22 2

2

2

kq kr k r pq

k pq

pq rr
u pq r

q q

  
  

 




    

        
  



 





,    (76)      

         

 Where 1 2
1

1

tan
c

c
   
  

 

,  

 
 

1
1

2

2

42 0 2

2

2 2

2

0 ( 4 ) 4
( ) cot 4

2

2 2 2 2

kq kr k r pq

k pq

pq rr
u pq r

q q

   
  




    

        
  



 





,  (77) 

 

Where  1 2
2

1

cot
c

c
   

  
 

. 

 If 
2 4 0r pq  , we have the rational wave solutions  
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Where c1 , c2 are arbitrary constants.  
 
 
Physical explanations of our obtained solutions 
 
Solitary, periodic and rational waves can be obtained 
from the exact solutions by setting particular values in its 
unknown parameters. Here, we have presented some 
graphs of solitary and periodic waves constructed by 
taking suitable values of involved unknown parameters to 
visualize the underlying mechanism of the original 
Equation (1). By using the mathematical software Maple, 
the plots of some obtained solutions have been shown in 
Figures 1 to 4. The obtained solutions of Equation (1) 
incorporate three types of explicit solutions, namely the 
hyperbolic, trigonometric and rational solutions.  
 
 
Some conclusions   
 
We have  used  the  Riccati  equation  method  combined 
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Figure 1. The plot of solutions 1 2,u u   with  0 1, 3.p q k r        

 

 
 

     
 

Figure 2.The plot of solutions 4 5,u u   with 0 1, 3.p q k r          

 
 
 
 

   
 

Figure 3. The plot of solutions 16 17,u u  with 0 1, 3.p q k r        
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Figure 4. The plot of solutions 
20 21,u u  with 0 1, 3.p q k r        

 
 
 

with the ( / )G G - expansion method to construct many 

new exact solutions of the nonlinear KPP Equation (1) 
involving parameters, which is expressed by the 
hyperbolic functions, the trigonometric functions and  the 
rational functions.  When the parameters are taken as 
special values the proposed method provides not only 
solitary wave solutions but also periodic wave solutions 
and rational wave solutions. These solutions will be of 
great importance for analyzing the nonlinear phenomena 
arising in applied physical sciences. This work shows that 
the proposed method is sufficient, effective and suitable 
for solving other nonlinear evolution equations in 
mathematical physics. Finally on comparing our results in 
this article with the results obtained in Feng et al. (2011) 
and Zayed and Hoda Ibrahim (2014), we conclude that 
our results are new and not reported elsewhere. 
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