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The incidences of intoxication due to the consumption of marine foods have been increasing in recent 
years. This is due to the presence of biotoxins in foods of marine origin. The biotoxins will be 
accumulated in the marine foods due to the consumption of toxic biota of marine origin. When this 
contaminated food is taken by the humans or animals, those toxins will be transferred to them causing 
intoxication and lethality. Among these intoxications, most of them are caused by the harmful algal 
blooms (HAB). In order to avoid the harmful effects from marine biotoxins, it is necessary to have the 
proper knowledge. In this manuscript, the different types of biotoxins, source of intoxication, 
characteristics of toxins, detection and control measures are discussed in detail. 
 
Key words: Harmful algal blooms, harmful algal blooms (HAB), ciguatara fish poisoning (CFP), paralytic 
shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP) blooming, detection. 

 
 
INTRODUCTION 
 
Microscopic planktonic algae of the world’s oceans are 
critical food for filter-feeding bivalve shellfish (oysters, 
mussels, scallops and clams) as well as for the larvae of 
commercially important crustaceans and fin fish. Over the 
last several decades, countries throughout the world 
have experienced an escalating trend in the incidence of 
“harmful algal blooms” (HABs) (Anderson, 1989; 
Hallegraeff, 1993). HAB events are characterized by the 
proliferation and occasional dominance of particular 
species of toxic or harmful algae. When toxic algae are 
filtered from the water as food by shellfish, their toxins 
accumulate in those shellfish to levels that can be lethal 
to humans or other consumers. Another type of HAB 
impact occurs when marine fauna are killed by algal 

species that release toxins and other compounds into the 
water. HABs include species of microscopic, usually 
single celled eukaryotic plants that live in estuarine and 
marine waters. A “bloom” occurs when algae grow very 
quickly or “bloom” and accumulate into dense visible 
patches near the surface of the water (National Office for 
Marine Biotoxins and Harmful Algal Blooms, 1999) 

During the past two decades, the frequency, intensity 
and geographic distribution of harmful algal blooms has 
increased, along with the number of toxic compounds 
found in the marine food chain. Different explanations for 
this trend have been given such as increased scientific 
awareness of toxic algal species, increased utilization of 
coastal waters for aquaculture, transfer of shellfish stocks 
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from one area to another, cultural eutrophication from 
domestic, industrial and agricultural wastes, increased 
mobility of humic substances and trace metals from soil 
due to deforestation and/or by acid precipitation (acid 
rain), and unusual climatic conditions (Hallegraeff et al., 
1995).  

A poorly defined but potentially significant concern 
relates to sublethal, chronic impacts from toxic HABs that 
can affect the structure and function of ecosystems. Adult 
fish can be killed by the millions in a single outbreak, with 
long- and short-term ecosystem impacts (Okaichi et al., 
1989; Kim et al., 1999). Likewise, larval or juvenile stages 
of fish or other commercially important species can 
experience mortalities from algal toxins (White et al., 
1989). HABs also cause mortalities of wild fish, seabirds, 
whales, dolphins and other marine animals. Non-toxic 
blooms of algae can cause harm, often due to the high 
biomass that some blooms achieve, and the deposition 
and decay of that biomass, leading to anoxia. Chronic 
toxin exposure may have long-term consequences that 
are critical with respect to the sustainability or recovery of 
natural populations at higher trophic levels (Ramsdell et 
al., 2005). Only a few of the many thousands of species 
of algae are associated regularly with toxic or harmful 
algal blooms (National Office for Marine Biotoxins and 
Harmful Algal Blooms, 1999). Shellfish poisoning 
syndromes include Ciguatara fish poisoning (CFP) and 
paralytic (PSP), diarrhetic (DSP), ciguatara (CFP), 
neurotoxic (NSP) and amnesic (ASP) shellfish poisoning 
based on human symptoms.  
 
 
TOXINS  
 
Ciguatara fish poisoning (CFP) 
 
Ciguatera poisoning in humans and domestic animals is 
caused by potent neurotoxins produced by benthic 
dinoflagellates including Gambierdiscus toxicu, 
Prorocentrum concavum, Prorocentrum hoffmannianum, 
Prorocentrum lima, Ostreopsis lenticularis, Ostreopsis 
siamensis, Coolia monotis, Thecadinium and 
Amphidinium carterae. In the tropics and subtropics toxic 
dinoflagellates living on coral reefs are eaten by small 
herbivorous fish grazing on coral which in turn are eaten 
by larger carnivores. The poisons move up the food chain 
into the organs of larger top-order predators such as 
coral trout, red bass, chinaman fish, mackerels and 
moray eels and cause ciguatera fish poisoning, CFP, in 
people who eat these fish (Kim, 1999; Klöpper et al., 
2003; Leikin, and Paloucek, 1998). 
 
 
Toxins produced: Ciguatoxin, Maitotoxin 
 
CFP produces gastrointestinal, neurological and 
cardiovascular  symptoms.  Generally, diarrhea,  vomiting  
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and abdominal pain occur initially, followed by 
neurological dysfunction including reversal of tempe-
rature sensation, muscular aches, dizziness, anxiety, 
sweating and numbness and tingling of the mouth and 
digits. Paralysis and death have been documented, but 
symptoms are usually less severe although debilitating. 
Recovery time is variable, and may take weeks, months, 
or years. Rapid treatment (within 24 h) with mannitol 
reported to relieve some symptoms. There is no antidote, 
supportive therapy is the rule, and survivors recover. 
Absolute prevention of intoxication depends upon 
complete abstinence from eating any tropical reef fish, 
since there is currently no easy way to measure routinely 
ciguatoxin or maitotoxin in any seafood product prior to 
consumption, (Nielsen and Tonseth, 1991; Partensky and 
Sournia, 1986; Partensky et al., 1988; Partensky et al., 
1991; Passow, 1991; Perez et al., 2001; Rafuse et al., 
2004; Schnorf et al., 2002; Tangen, 1977; Taylor et al., 
1995; Tillmann, 2004). 
 
 
Chemical properties 
 
Ciguatoxins are lipid-soluble polyether compounds 
consisting of 13 to 14 rings fused by ether linkages into a 
most rigid ladder-like structure (Figure 1). They are 
relatively heat-stable molecules that remain toxic after 
cooking and exposure to mild acidic and basic conditions. 
Ciguatoxins arise from biotransformation in the fish of 
precursor gambier toxins (Lehane and Lewis, 2000; 
Lehane, 2000). 

In areas in the Pacific, the principal and most potent 
ciguatoxin is Pacific ciguatoxin-1 (P-CTX-1, mol. wt. 
1112). Its likely precursor is gambiertoxin-4B (GTX-4B). 
The main ciguatoxins in the Pacific, P-CTX-1, P-CTX-2 
and P-CTX-3, are present in fish in different relative 
amounts (Lehane and Lewis, 2000; Lehane, 2000). 
Caribbean (and Indian Ocean) ciguatoxins differ from 
Pacific ciguatoxins. Caribbean CTX-1 (C-CTX-1) is less 
polar than P-CTX-1. Structures of two Caribbean 
ciguatoxins (C-CTX-1 and C-CTX-2) were elucidated in 
1998. The structures of more than 20 congeners of 
ciguatoxin were elucidated. Structural modifications were 
mainly seen in the both termini of the toxin molecules and 
mostly by oxidation (Naoki et al., 2001; Yasumoto et al., 
2000). Multiple forms of ciguatoxin with minor molecular 
differences and pathogenicity were described. CTX-1 is 
the major toxin found in carnivorous fish and poses a 
human health risk at levels above 0.1 µg/kg fish (De 
Fouw et al., 1999). The energetically less favored 
epimers, P-CTX-2 (52-epi P-CTX-3), P-CTX-4A (52-epi 
P-CTX-4B) and C-CTX-2 (56-epi C-CTX-1) are indicated 
in parenthesis. 2, 3-Dihydroxy P-CTX-3C and 51-hydroxy 
P-CTX-3C have also been isolated from Pacific fish 
(Lewis, 2001). Various species of parrotfish have 
previously been reported to contain a toxin less polar 
than CTX-1, named scaritoxin. Judging from the reported  
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R1 R2 

P-CTX-1: 
1
CH2OHCHOH OH 

P-CTX-3 (P-CTX-2): 
1
CH2OHCHOH H 

P-CTX-4B (P-CTX-4A); 
1
CH2CH H 

 
P-CTX-3C 

 
C-CTX-1 (C-CTX-2)  
 
Figure 1. Structure of Pacific (P) and Caribbean (C) ciguatoxins (CTXs). Source: Yasumoto et al., 2000 and Lewis, 2001. 

 
 
 
chromatographic properties, scaritoxin seems to 
correspond to a mixture of CTX-4A and CTX-4B (De 
Fouw et al., 1999). 
 
 
Diarrhetic shellfish poisoning (DSP) 
 
Diarrhetic shellfish poisoning (DSP) is produced by 
dinoflagellates in the genera Dinophysis and 
Prorocentrum like Dinophysis, Prorocentrum, Dinophysis 

fortii, Dinophysis acuminata, Dinophysis norvegica, 
Dinophysis acuta (Murakami et al., 1982; Lee et al., 
1989; Jackson et al., 1993). 
 
 
Toxin produced: Okadaic acid 
 
DSP produces gastrointestinal symptoms, usually 
beginning within 30 min to a few hours after consumption 
of toxic shellfish. The illness, which is not fatal, is 
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R1 R2 R3 

Okadaic acid (OA) H H CH 3 

Dinophysistoxin-1 (DTX1) H CH 3 CH 3 

Dinophysistoxin-2 (DTX2) H CH 3 H 

Dinophysistoxin-3 (DTX3) acyl CH 3 CH 3 

 

  
R C-7 

Pectenotoxin-1 (PTX1) CH 2OH R 

Pectenotoxin-2 (PTX2) CH 3 R 

Pectenotoxin-3 (PTX3) CHO R 

Pectenotoxin-4 (PTX4) CH 2OH S 

Pectenotoxin-6 (PTX6) COOH R 

Pectenotoxin-7 (PTX7) COOH S 

 
 C-7 

Pectenotoxin-2 seco acid (PTX2SA) R 

7-epi-PTX2SA S 

 
 

 

Figure 2. Chemical structures of okadaic acid, dinophysistoxins and pectenotoxins. 
Source: Yasumoto et al., 2001. 

 
 
 
characterized by incapacitating diarrhea, nausea, 
vomiting, abdominal cramps and chills. Recovery occurs 
within three days, with or without medical treatment, 
(Climent and Lembeye, 1993; Climent et al., 2001; 
Clement, 1999; Cohen, 1974; Cosper et al., 1989; Currie 
et al., 2000).  
 
 
Chemical properties 
 
The DSP toxins are all heat-stable polyether and 
lipophilic compounds isolated from various species of 

shellfish and dinoflagellates (Draisci et al., 1996a) 
(Figures 2 and 3). Although diarrhea is the most 
characteristic symptom of intoxication, several other 
effects may be of relevance and some of the toxins in the 
DSP complex (PTXs and YTXs) do not yield diarrhea at 
all (Van Egmond et al., 1993). Re-evaluation of their 
toxicity will probably lead to these toxins being removed 
from their classification as DSP toxins (Quilliam, 1998a). 
The different chemical types of toxins associated with the 
DSP syndrome comprise: 
 
a) The first group, acidic toxins, includes okadaic acid
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Figure 3. Chemical structures of yessotoxins and adriatoxin. Source: Ciminiello et al., 1998; 2002 and Yasumoto et al., 2001. 

 
 
 
(OA) and its derivatives named dinophysistoxins (DTXs). 
Okadaic acid and its derivatives (DTX1, DTX2 and DTX3) 
are lipophilic and accumulate in the fatty tissue of 
shellfish. These compounds are potent phosphates 
inhibitors and this property is linked to inflammation of the 
intestinal tract and diarrhea in humans (Van Apeldoorn et 
al., 1998; Hallegraeff et al., 1995). OA and DTX1 are also 

tumor promoters in animal test systems (Draisci et al., 
1996a; Van Egmond et al., 1993). DTX1 was first 
detected in Dinophysis fortii in Japan; DTX2 was 
identified in shellfish in Ireland during a DSP episode 
(Van Egmond et al., 1993). DTX2 was isolated also from 
a marine phytoplankton biomass mainly consisting of  
Dinophysis  acuta  (James  et   al., 1999). A  new  isomer 



 
 
 
 
of DTX2, named DTX2B, was isolated and identified in 
Irish mussel extracts (James et al., 1997). DTX3 
originally described a group of DSP toxin derivatives in 
which saturated or unsaturated fatty acyl groups are 
attached to the 7-OH group of DTX1. More recently it has 
been shown that any of the parent toxins, OA, DTX1 and 
DTX2, can be acylated with a range of saturated and 
unsaturated fatty acids from C14 to C18 (Hallegraeff et al., 
1995; Wright, 1995). In a report of an EU meeting, it was 
stated that chain length of the fatty acid can vary from 
C14to C22 and that the number of unsaturation varying 
from 0 to 6. The most predominantly saturated fatty acid 
in DTX3 was palmitoyl acid (EU/SANCO, 2001). These 
acylated compounds also possess toxic activity. Since 
these compounds have only been detected in the 
digestive gland of contaminated shellfish, it has been 
suggested that they are probably metabolic products and 
not de novo products of toxin producing micro algae 
(Wright, 1995). Suzuki et al. (1998) demonstrated the 
transformation of DTX1 to 7-O-acyl-DTX1 (DTX3) in the 
scallop Patinopecten yessoensis. The ester bond in the 
acylated compounds can be hydrolyzed by heating in 0.5 
M NaOH/90 percent methanol solution at 75°C for 40 
min. The ester bond in DTX3 was also easily hydrolyzed 
by lipase and cholesterol esterase (EU/SANCO, 2001). 

Two naturally occurring ester derivatives called diol 
esters were isolated from some Prorocentrum species. 
These diol esters did not inhibit phosphatase in vitro. 
However, it should be noted that these allylic diol esters 
may be somewhat labile and could be hydrolysed to yield 
the active parent DSP toxin (Hallegraeff et al., 1995). 
Draisci et al. (1998) reported the detection of another OA 
isomer and called it DTX2C. The structure of DTX2C is 
not yet elucidated. The compound was isolated 
from Dinophysis acuta collected in Irish waters. 
 
b) The second group, neutral toxins, consists of 
polyether-lactones of the pectenotoxin group (PTXs). Ten 
(10) PTXs have been isolated until now and six out of 
these have been chemically identified; PTX1, -2, -3, -4, -6 
and -7. Since PTX2 (PTX2,CH3) is found in phytoplankton 
only (Dinophysis fortii in Japan and Europe) and never in 
shellfish, it is suggested that an oxidation occurs in the 
hepatopancreas of shellfish producing other PTXs (PTX1, 
CH2OH; PTX3, CHO; PTX6, COOH) (Draisci et al., 
1996a; Yasumoto et al., 2001; Van Apeldoorn et al., 
1998). Sasaki et al. (1998) identified PTX4 and PTX7 as 
spiroketal isomers of PTX1 and PTX6, namely epi-PTX1 
and epi-PTX6, respectively. Suzuki et al. (1998) 
demonstrated oxidation of PTX2 to PTX6 in scallops 
(Patinopecten yessoensis). Two new artifacts, PTX8 and 
PTX9, were also isolated but their structures are not yet 
elucidated. Daiguji et al. (1998) isolated two new pecteno 
toxins from the green shell mussel Perna canalicus from 
New Zealand and from Dinophysis acuta from Ireland 
and elucidated the structures as pectenotoxin-2-seco 
acid  (PTX2SA)  and  7-epi-pectenotoxin-2  seco  acid (7- 
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epi-PTX2SA), respectively.  
 

c) The third group includes a sulphated compound called  
yessotoxin (YTX), a brevetoxin-type polyether, and its 
derivative 45-hydroxyyessotoxin (45-OH-YTX) (Draisci et 
al., 1996a; Van Egmond et al., 1993). Yessotoxin was 
first isolated from the digestive organs from scallops 
(Patinopecten yessoensis) in Japan (Ciminiello et al., 
1999) and is believed to be produced by microalgae. The 
yessotoxins do not cause diarrhoea. Yessotoxin attacks 
the cardiac muscle in mice after intra peritoneal injection, 
while desulphated yessotoxin damages the liver (Van 
Egmond et al., 1993). In the digestive gland of Adriatic 
mussels (M. galloprovincialis) besides yessotoxin, two 
new analogues of yessotoxin, homoyessotoxin and 45-
hydroxyhomoyessotoxin were identified by Ciminiello et 
al. (1997, 1999). Tubaro et al. (1998) also detected 
homoyessotoxin in M. galloprovincialis from the Adriatic 
Sea during a bloom of Gonyaulax 
polyhedra (Lingulodinium polyedrum). Satake et al. 
(1997) and Satake et al. (1999) isolated YTX and 45, 46, 
47-trinoryessotoxin from cultured cells of the marine 
dinoflagellate Protoceratium reticulatum. The production 
of yessotoxins by P. reticulatum differed from strain to 
strain. Ciminiello et al. (1998) detected again a new 
analogue of YTX, adriatoxin (ATX), in the digestive 
glands of DSP infested Adriatic mussels collected in 1997 
along the Italian coast (Emilia Romagna). In addition, four 
further analogues of yessotoxin, carboxyyessotoxin 
(COOH group on C44 of YTX instead of double bond), 
Carboxyhomoyessotoxin (COOH group on C44 of 
homoYTX instead of double bond) (Ciminiello et al., 
2000a, b), 42,43,44,45,46,47,55-heptanor-41-oxo YTX 
and 42,43,44,45,46,47,55-heptanor-41-oxohomo YTX 
(Ciminiello et al., 2001, 2002) in Adriatic mussels (Mytilus 
galloprovincialis) were identified. 
 

d) Unexplained human intoxication, with DSP symptoms, 
following the consumption of mussels from Killary, Ireland 
in 1995 was resolved by the isolation of a new toxin 
(C47H71NO12), tentatively named Killary Toxin-3 or KT3 
(Satake et al., 1998a). 
 
 

NEUROTOXIC SHELLFISH POISONING (NSP) 
 

Neurotoxic shellfish poisoning (NSP) is caused by toxins 
produced predominantly by Gymnodinium species like 
Gymnodinium breve, Karenia brevis. Several species of 
phytoplankton in New Zealand have been found to pro-
duce NSP toxins. These include Gymnodinium c.f. breve, 
Gymnodinium c.f. mikimotoi (which may include three 
separate species), G. galatheanum and a species of 
Heterosigma (Mackenzie et al., 1995a; Haywood, 1998). 
The identity of the causative agent in the 1993 NSP event 
in Northland is uncertain: both Gymnodinium c.f. breve 
and Gymnodinium c.f. mikimotoi were present in elevated 
numbers at the time (Chang, 1996; Mackenzie et al., 1995b). 
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Toxins produced: Brevetoxins 
 
NSP produces an intoxication syndrome nearly identical 
to that of ciguatera. In this case, gastrointestinal and 
neurological symptoms predominate. In addition, 
formation of toxic aerosols by wave action can produce 
respiratory asthma-like symptoms. No death has been 
reported and the syndrome is less severe than ciguatera, 
but nevertheless debilitating. Unlike ciguatera, recovery is 
generally complete in a few days.  

Monitoring programs (based on Karenia brevis cell 
counts) generally suffice for preventing human intoxi-
cation, except when officials are caught off-guard in 
previously unaffected areas (Passow, 1991; Perez et al., 
2001; Rafuse et al., 2004; Schnorf et al., 2002; Tangen, 
1977; Taylor et al., 1995). 
 
 
Chemical properties 
 
The NSP toxins, called brevetoxins, are tasteless, 
odorless, heat and acid stabile, lipid-soluble, cyclic 
polyether neurotoxins produced by the marine dinofla-
gellate such as Gymnodinium breve (or Ptychodiscus 
brevis). The molecular structure of the brevetoxins con-
sists of 10 to 11 transfused rings; their molecular weights 
are around 900. Ten brevetoxins have been isolated and 
identified from field blooms and G. breve cultures 
(Benson et al., 1999) (Figure 4). These brevetoxins show 
specific binding to site-5 of voltage-sensitive 
Na

+
 channels leading to channel activation at normal 

resting potential. This property of the brevetoxins causes 
the toxic effects (Cembella et al., 1995). PbTx-2 is the 
major toxin isolated from G. breve. 

Four brevetoxin analogues (Figures 5 and 6) were 
isolated from contaminated shellfish. The brevetoxin 
analogues were analysed in cockles (Austrovenus 
stutchburyi) (BTX-B1) (Ishida et al., 1995) and Green 
shell mussels (Perna canaliculus) (BTX-B2, BTX-B3 and 
BTX-B4) (Morohashi et al., 1995, 1999; Murata et al., 
1998) and differed from brevetoxins isolated from 
dinoflagellate cultures. Apparently BTX-B1, BTX-B2, 
BTX-B3 and BTX-B4 are metabolites formed by the 
shellfish itself as they were not found in field blooms or G. 
breve cultures. The presence of BTX-B2, BTX-B3 and 
BTX-B4 in Perna canaliculus does suggest that metabolic 
pathways in this species are more complicated than 
those in cockles (A. stutchburyi). However, the major 
toxins in shellfish were left unelucidated because of the 
extreme difficulty in isolation (Morohashi et al., 1999). 

In addition to brevetoxins, some phosphorus containing 
ichthyotoxic compounds resembling anti cholinesterases, 
have also been isolated from G. breve (Figure 7). One 
example is an acyclic phosphorus compound with an 
oximino group in addition to a thiophosphate moiety, 
namely O,O-dipropyl(E)-2-(1-methyl-2-oxopropylidene) 
phosphorohydrazidothioate-(E) oxime (Van Apeldoorn et 

 
 
 
 
al., 2001). 
 
 
Paralytic shellfish poisoning (PSP) 
 
Paralytic shellfish poisoning (PSP) toxins are present in 
some genera of dinoflagellates and one species of 
cynobacteri. Several species of the genus Alexandrium 
(formerly named Gonyaulax or Protogonyaulax) are 
identified as contaminators in shellfish. These are 
Alexandrium tamarensis, Alexandrium minutum (syn. 
Alexandrium excavata), Alexandrium catenella, 
Alexandrium fraterculus, Alexandrium fundyense and 
Alexandrium cohorticula. Other clearly distinct 
dinoflagellates have also been recognised as sources of 
the STXs.  

These are Pyrodinium bahamense and Gymnodinium 
catenatum (Mons et al., 1998). The toxicity of the 
dinoflagellates is due to a mixture of STX derivatives of 
which the composition differs per producing species 
and/or per region of occurrence. 
 
 
Toxins produced: Saxitoxins 
 
PSP, like ASP, is a life threatening syndrome. Symptoms 
are purely neurological and their onset is rapid. Duration 
of effects is a few days in non-lethal cases. Symptoms 
include tingling, numbness, and burning of the perioral 
region, ataxia, giddiness, drowsiness, fever, rash, and 
staggering.  

The most severe cases result in respiratory arrest 
within 24 h of consumption of the toxic shellfish. If the 
patient is not breathing or if a pulse is not detected, 
artificial respiration and CPR may be needed as first aid. 
There is no antidote, supportive therapy is the rule and 
survivors recover fully. PSP is prevented by large-scale 
proactive monitoring programs (assessing toxin levels in 
mussels, oysters, scallops, clams) and rapid closures to 
harvest of suspect or demonstrated toxic areas. Paralytic 
shellfish poisoning (PSP) has been reported to occur 
after eating puffer fish, filter feeding shellfish and 
molluscs.  

If ingested by humans, PSP produces neurologic 
symptoms such as tingling and burning of the mouth and 
tongue, numbness, drowsiness and incoherent speech. 
These symptoms occur within 30 min to two hours after 
ingestion and in severe cases cause ataxia, muscle 
weakness, respiratory paralysis and death. The Toxic 
Exposure Surveillance System (TESS) of the American 
Association of Poison Control Centres has identified 10 
illnesses of presumed puffer fish poisoning due to 
exposure from PSP after eating puffer fish from the area 
of Titusville, Florida, (Klöpper et al., 2003; Leikin and 
Paloucek, 1998; Lembeye et al., 1993; Lembeye, 1981; 
Luckas et al., 2005; MacKenzie et al., 1996; Mahoney et 
al., 1990). 
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Type 1 (A) brevetoxins: PbTx-1, R = CH2C(=CH2)CHO 

 PbTx-7, R=CH2C(=CH2)CH2OH 

 PbTx-10, R=CH2CH(CH3)CH2OH 

 

Type 2 (B) brevetoxins: PbTx-2 R = CH2C(=CH2)CHO 

 oxidized PbTx-2 R=CH2C(=CH2)COOH 

 PbTx-3 R=CH2C(=CH2)CH2OH 

 PbTx-8 R=CH2COCH2Cl 

 PbTx-9 R=CH2CH(CH3)CH2OH 

 PbTx-5 the K-ring acetate of PbTx-2 

 PbTx-6 the H-ring epoxide of PbTx-2 

 

 
 

Figure 4. Chemical structures of type A and B brevetoxins (Hua et al., 1996). 

 
 
 
Chemical properties 
 
The PSP toxins form a group of closely related tetra 
hydropurine compounds that make up four subgroups: i) 
Carbamate (STX, neo STX and Gonyautoxins (GNTX1-
4); ii) N-sulfo-carbamoyl (GNTX5-6, C1-4); iii) 

Decarbamoyl (dc-) (dcSTX, dcneoSTX, dcGNTX1-4); and 
iv) deoxydecarbamoyl (do-) (doSTX, doneoSTX and 
doGNTX1) components. At least 21 PSP toxins (Figure 
8) mainly from marine dinoflagellates and shellfish that 
feed on toxic algae have been identified. Attempts to 
isolate PSP toxins began more than one hundred years 
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Figure 5. Chemical structures of brevetoxin analogues BTX-B1, -B2 and -B4 isolated from contaminated shellfish. Source: 

Yasumoto et al., 2001. 
 
 
 

 
BTX-B3 
R = CH3(CH2)12CO or CH3(CH2)14CO  
 

Figure 6. Chemical structure of brevetoxin analogue BTX-B3 isolated from contaminated shellfish. Source: Yasumoto et al., 
2001. 

 
 

 

ago but their occurrence as mixtures of compounds with 
different ionizable functionalities complicated isolation 
procedures and early progress was slow. The 
development of ion-exchange chromatography, guided by 

mouse bioassays, eventually led to the isolation of a 
water-soluble basic toxin from the Alaska butter clam 
(Saxidomus giganteus). This compound was later given 
the trivial name saxitoxin (STX). 



 
 
 
 

 
 
Figure 7. Phosphorus containing ichthyotoxic toxin 

isolated from G. breve. Source: Van Apeldoorn et al., 
2001. 

 
 
 

In 1975, the first crystalline derivative of STX was 
synthesized and the structure was studied (Bower et 
al., 1981). By means of X-ray crystallographic and 
nuclear magnetic resonance (NMR) spectroscopic 
studies the structure of STX was elucidated (Figure 8 for 
the chemical structures of STX and other PSP toxins). 
The dihydroxy or hydrated ketone group on the five rings 
is essential for its poisonous activity. Catalytic reduction 
of this group with hydrogen to a monohydroxy group 
eliminates the activity. Removal of the carbamoyl group 
side-chain on the six-membered ring, leaving a hydroxyl 
group in its place, produces a molecule with about 60% 
of the original toxic activity. The presence of this active 
hydroxyl group establishes a means for the preparation of 
various derivatives of STX (Mons et al., 1998). The PSP 
toxins are heat stable at acidic pH (with the exception of 
the N-sulfo-carbamoyl components) but unstable and 
easily oxidized under alkaline conditions (Mons et al., 
1998). 
 
 

Amnesic shellfish poisoning (ASP) 
 
Amnesic shellfish poisoning (ASP) is caused by Domoic 
acid (Wright et al., 1989). Species within the genus 
Pseudo nitzschia produce Domoic acid. This toxin is 
unusual in being produced by diatoms rather than 
dinoflagellates and some causative organisms like 
Pseudo nitzschia australis, Pseudonitzschia pungens. 
 
 

Toxins produced: Domoic acid 
 
ASP can be a life-threatening syndrome. It is charac-
terized by both gastrointestinal and neurological dis-
orders. Gastroenteritis usually develops within 24 h of the 
consumption of toxic shellfish; symptoms include nausea, 
vomiting, abdominal cramps and diarrhea. In severe 
cases, neurological symptoms also appear, usually within 
48 h of toxic shellfish consumption. These symptoms 
include dizziness, headache, seizures, disorientation, 
short-term memory loss, respiratory difficulty, and coma. 
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In 1987, four victims died after consuming toxic 
mussels from Prince Edward Island, Canada. Since that 
time, Canadian authorities have monitored both the water 
column for the presence of the causative diatom, and 
shellfish for the presence of the toxin, domoic acid. 
Shellfish beds are closed to harvesting when the domoic 
acid concentration reaches 20 μg/g shellfish meat. Fish 
and crab viscera can also contain domoic acid, so the 
risk to human consumers and animals in the marine food 
chain is more significant than previously believed (Rafuse 
et al., 2004; Schnorf et al., 2002). 

ASP can be a life-threatening syndrome. It is charac-
terized by both gastrointestinal and neurological dis-
orders. Gastroenteritis usually develops within 24 h of the 
consumption of toxic shellfish and symptoms include 
nausea, vomiting, abdominal cramps and diarrhea. In 
severe cases, neurological symptoms also appear, 
usually within 48 h of toxic shellfish consumption. These 
symptoms include dizziness, headache, seizures, dis-
orientation, short-term memory loss, respiratory difficulty 
and coma (Uribe, 2001, 1992; Villareal et al., 1997; 
Widdows et al., 1979; Windust, and Quilliam, 2004; 
Wommack et al., 2003). 

 
 
Chemical properties 

 
Discrimination between some species of Pseudo-
nitzschia is virtually impossible under a light microscope 
because of morphological similarity between species- 
some species differ in details that can only be detected 
under an electron microscope. However, whole cell DNA 
probes have been developed to distinguish between 
species (Rhodes et al., 1998), and these are utilised by 
industry in risk management when deciding whether to 
implement voluntary closures to harvesting, pending the 
results of shellfish toxicity testing. 

Amnesic shellfish poisoning (ASP) is caused by domoic 
acid (DA) (Figure 9), a naturally occurring compound 
belonging to the kainoid class of compounds that have 
been isolated from a variety of marine sources including 
macro- and microalgae (Wright and Quilliam, 1995). DA 
is a crystalline water-soluble acidic amino acid. It can be 
purified by a variety of chromatographic methods and 
contains a strong chromophore that facilitates detection 
by UV spectroscopy.  

DA was originally discovered as a product of a red 
macroalgae Chondria armata and was later isolated from 
several other red macroalgae. However, these seaweeds 
were not the source of DA in the first reported ASP 
incident on Prince Edward Island in Canada in 1987. The 
source of DA in this outbreak of ASP was found to be the 
diatom Pseudo- nitzschia (formerly Nitzschia) pungens 
forma multi series. DA is a potent neurotoxin and the 
kainoid class of compounds to which DA belongs, is a 
class of excitatory neurotransmitters that bind to specific 
receptor proteins in neuronal cells causing continual
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Figure 8. Chemical structures of PSP toxins. Source: Mons et al., 1998; Quilliam et al., 2001. 

 
 
 
depolarization of the neuronal cell until cell rupture occurs 
(Wright, 1995). 

Investigation of the kainoids present in Chondria 
armata resulted in the discovery, in minor amounts, of the 
geometrical isomers isodomoic acid A, B and C (Figure 
9) as well as domoilactones. None of these isomers, 
found in seaweed, were detected in extracts of plankton 
or shellfish tissue. However, three other geometrical 
isomers (isodomoic acids D, E and F) and the C5’ 
diastereomer (Figure 8) were isolated from both plankton 
cells and shellfish tissue (Wright and Quilliam, 1995; 
Ravn, 1995). The geometrical isomers can be prepared 
in the laboratory by brief exposure of dilute solutions of 
DA to UV light, and are therefore not considered to be de 
novo products of the plankton. Pharmacological studies 
indicate that these photoisomers bind less strongly to the 
kainate receptor proteins than DA itself suggesting that 
they are not as toxic as the parent amino acid. Formation 
of the C5’ diastereomer is accelerated with warming. This 
C5’ diastereomer shows almost the same binding efficacy 
to the kainate receptor as DA itself (Wright and Quilliam, 
1995). Zaman et al. (1997b) reported the isolation of two 
new isomers of DA from the red alga Chondria armata, 
i.e. isodomoic acid G and H (Figure 9). 

DETECTION OF MARINE TOXIC  
 
In all cases, the marine HAB toxins that cause the human 
poisoning syndromes consist of families or groups of 
structurally related compounds, with individual derivatives 
exhibiting potencies that can significantly differ from other 
congeners (Van Dolah, 2001). During food web transfer, 
HAB toxins can also be metabolized or bio-transformed 
into structurally different compounds. The broad chemical 
and structural diversity of algal toxins and their 
derivatives and metabolites, coupled with differences in 
their potency account for many of the challenges 
associated with their detection in ocean observatory 
programs. Traditionally, biotoxin monitoring programs 
have relied on measurements of toxins in shellfish 
samples collected weekly or bi-weekly from key locations 
in areas affected by HABs (Shumway et al. 1988).  

Toxin measurement methods can be grouped into three 
main types: chemical, in vitro, and in vivo assays 
(Hallegraeff et al., 2003). The latter (bioassays) have had 
a long history in HAB toxin detection, but are obviously 
not amenable to automation and high-throughput analysis 
in ocean observatories, so the only options in that context 
are measurements of toxin in seawater using either 
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Figure 9. Chemical structures of domoic acid and its isomers. Source: Wright and Quilliam, 1995, 

Zaman et al. (1997b). 

 
 
 
chemical analyses or in vitro assays. This immediately 
introduces some concerns, as considerable work will be 
needed to relate measurements of toxins dissolved in 
seawater, or in particulate form in that water, to the risk to 
human consumers of shellfish or fish. 

Chemical methods for toxin analysis include high 
performance liquid chromatography (HPLC), and mass 
spectrometry coupled to liquid chromatographic sepa-
ration (Quilliam 1996). Of these two alternatives, only 
mass spectrometry shows the potential for use in ocean 
observatories, and the challenges remain significant due 
to the diversity, size, and solubility of the toxins, as well 
as the matrices in which they occur (for example, parti-

culate versus dissolved). Another constraint is the need 
to perform spectrometry in a vacuum and underwater, 
which poses significant engineering challenges. Progress 
has been good, however. For example, a small, modular 
mass spectrometer has been developed and mounted in 
an Autonomous Underwater Vehicles (AUV) (Wenner et 
al., 2004). That system consists of an in situ membrane-
introduction linear-quadrupole mass spectrometer 
capable of detecting dissolved gases and volatile organic 
compounds at sub parts-per-billion concentrations. This 
instrument is still under development and has not been 
configured for HAB toxins, but future designs may permit 
the analysis of HAB toxins that occur dissolved in seawater 
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 (for example, brevetoxins, domoic acid, okadaic acid). 

Analysis of toxins in particulate form will require a 
different approach, such as laser desorption mass 
spectrometry (LDMS), which is widely employed in 
analytical laboratories due to its simplicity of operation 
and rapid analysis times. One benefit of LDMS is that 
many different types of materials can be vaporized and 
ionized by a tightly focused laser beam (Cotter 1997). 
This can avoid sample purification or preparative tech-
niques, which is critical to deployment of such tech-
nologies in a moored or mobile configuration in an Ocean 
Observing System (OOS), as it will greatly reduce 
sampling and handling requirements, and thus power 
drain, space needs, and reagent needs as well. LDMS 
has been used for the detection of bacterial spores, 
vegetative cells, viruses, and toxins in aerosol environ-
ments (Fenselau and Demirev, 2001), and efforts are 
underway to apply this method to HAB cells and 
dissolved toxins in seawater. 

Another important and rapidly developing group of HAB 
toxin detection methods comprises the in vitro assays. 
One subgroup the functional assays, relies on detection 
of a toxin’s biochemical activity while the other structural 
assays depends on recognition of chemical structure at 
the molecular level (Cembella et al., 2003; Van Dolah 
and Ramsdell, 2001). A variety of functional assays have 
been developed for the detection of HAB toxins, including 
cyto toxicity assays (Manger et al., 1995), enzyme 
inhibition assays (Della Loggia et al., 1999), and receptor 
binding assays (Van Dolah et al., 1994). Nevertheless, 
retention of the biological activity of a cell line or a 
receptor preparation outside the laboratory remains a 
significant, and thus far, insurmountable obstacle to in 
situ use of these assays (Sellner et al., 2003). 

In contrast, structural assays show considerable 
promise for automated deployment in an observatory 
system. These assays rely on the structural or confor-
mational interaction of a toxin with a recognition factor 
such as an antibody. Antibody-based assays have been 
developed for a variety of HAB toxins and many of these 
tests are now commercially available (Laycock et al., 
2001; Cembella et al., 2003). One novel immunoassay 
utilizes surface plasmon resonance (SPR) in a portable 
system developed for rapid field quantification of toxin 
levels in both shellfish and seawater (Stevens et al., 
2007).  

The SPR assay had a limit of detection of 3 ppb domoic 
acid and a quantifiable range from 4 to 60 ppb. 
Comparison of analyses with standard HPLC protocols 
gave an excellent correlation. This same technology 
should also function for detection of domoic acid (and 
other algal toxins for which antibodies are available) in 
concentrated algal extracts or high dissolved levels in 
seawater. With refinement of the extraction protocols and 
generation of higher affinity monoclonal antibodies, 
detection of much lower levels of toxin should be possi-
ble,  leading  to eventual  application  of  automated  SPR 

 
 
 
 
biosensors on moorings. Another novel and potentially 
useful approach for in situ observations is a competitive 
immunoassay using screen printed electrodes (SPEs; 
Kreuzer et al., 2002; Micheli et al., 2004). Excellent 
sensitivity and accuracy has been achieved with HAB 
toxins such as okadaic acid, brevetoxin and domoic acid 
and for all toxins investigated, results compared 
favourably with other toxin analysis techniques. The 
advantages of speed of analysis, simplicity of design, in 
situ measurement capability, stability (storage up to four 
weeks prior to use), and disposability make screen 
printed electrodes (SPE) immune sensors good 
candidates for observatory instrumentation. Adaptation of 
this and other immunoassay technologies to robotic 
systems and deployment in remote locations is thus 
possible, but will require further development effort. 
 
 

CONCLUSION 
 

Only a small number of HAB species can be detected 
using optical measurements, either in situ or remotely 
from space, and therefore instruments that can detect the 
vast majority of HAB species need to have capabilities for 
sample collection, concentration, and manipulation. The 
chemistries and procedures for cell identification and 
enumeration using molecular probe assays of various 
types are well established. 
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