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In this paper, a similarity transformation is used to reduce the three-dimensional steady state 
condensation film on an inclined rotating disk by a set of nonlinear boundary value problems. This 
problem is solved using a new hybrid technique based on differential transform method (DTM) and 
Iterative Newton's Method (INM). The differential equations and its boundary conditions are transformed 
to a set of algebraic equations, and the Taylor series of solution is calculated. After finding Jacobian 
matrix, the unknown parameters computed using Multi-Variable Iterative Newton's Method. These 
techniques are used to obtain an approximate solution of the problem. In this solution, there is no need 
to restrictive assumptions or linearization. The results compared with the numerical solution of the 
problem, and a good accuracy of the proposed hybrid method observed. Finally, the velocity and 
temperature profiles demonstrated for different values of problem parameters. 
 
Key words: Condensation film, rotating disk, nonlinear boundary value problem, differential transform method, 
iterative Newton's method, Jacobian matrix. 

 
 
INTRODUCTION 
 
Usually scientific problems and phenomena in our world 
are essentially nonlinear and modeled by the nonlinear 
differential equations. Most of them do not have an exact 
analytical solution. So, numerical and approximate 
methods are used by researchers to solve such 
equations. The numerical methods are often costly and 
time consuming to get a complete form of results, 
because it gives the solution at the discrete points. 
Furthermore, in the  numerical  solution  the  stability  and 

convergence should be considered to avoid divergence 
or inappropriate results. 

Approximate techniques like Decomposition Method 
(DM), Homotopy Analysis Method (HAM), Homotopy 
Perturbation Method (HPM), Variational Iteration Method 
(VIM) are good substitutes for numerical methods. During 
the recent years, some of the nonlinear engineering 
problems have been solved using some of these 
methods, such as HAM (Rashidi et  al.,  2008;  Dinarvand 
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Figure 1. The schematic diagram of the problem (Rashidi and 
Dinarvand, 2009). 
 
 
 
et al., 2009; Rashidi et al., 2008, 2009; Liao, 2009; 
Ziabakhsh and Domairry, 2009; Abbasbandy and Hayat, 
2009), HPM (Raftari and Yildirim, 2010; Esmaeilpour and 
Ganji, 2007; Fathizadeh and Rashidi, 2009; Bararnia et 
al., 2012), VIM (Mohyud-Din et al., 2010; Rashidi and 
Shahmohamadi, 2009; Wazwaz, 2007) and DM (Wazwaz 
2006; Alizadeh et al., 2009; Kechil and Hashim, 2007). In 
most of the researches, some modifications introduced to 
overcome the nonlinearity. Also, the fractional differential 
equations are investigated using some approximate 
solution in Yang (2012), Yang and Baleanu (2013) and 
Yang et al. (2013a, b). 

Differential transform method is also one of the other 
approximate methods to solve differential equations. This 
method was introduced by Zhou (1986) to solve initial 
value problems in analysis of the electrical circuits. After 
that, DTM applied to differential algebraic equation (Ayaz, 
2004; Liu and Song, 2007) partial differential equation 
(Ayaz, 2003, 2004; Ravi-Kanth and Aruna, 2008; Yang et 
al., 2006; Chang and Chang, 2009), integral equation 
(Odibat, 2008; Arikoglu and Ozkol, 2005, 2008), ordinary 
differential equation (Mosayebidorcheh, 2014; 
Mosayebidorcheh and Mosayebidorcheh, 2012; Torabi 
and Aziz, 2012; Joneidi et al., 2009) and fractional 
differential equation (Nazari and Shahmorad, 2010; 
Odibat et al., 2008; Erturk et al., 2008; Arikoglu and 
Ozkol, 2007). The method is an iterative technique to find 
the Taylor series solution of the problem. In this method, 
there is no need to the high calculation cost to determine 
the coefficients of Taylor series.  

Removing a condensate liquid from a cooled, saturated 
vapor is applicable in engineering phenomena. First work 
with this subject is done by Von Karman (1921) about a 
rotating disk in an infinite fluid. The motion of the 
condensate film using centrifugal forces on a cooled 
rotating disk is considered by Sparrow and Gregg (1959). 
They transformed the Navier-Stokes equations into a 
system   of   nonlinear   boundary   value   problems  and 

 
 
 
 
numerically integrated for some finite film thicknesses. 
Their work was extended by considering vapor drag by 
Beckett et al. (1973) and considering suction on the plate 
by Chary and Sarma (1976). The problem is also related 
to chemical vapor deposition, when a thin fluid film is 
deposited on a cooled rotating disk (Jensen, 1991). 

The main goal of this paper is to present an analytical 
approximate solution of the steady three-dimensional 
problem of condensation film on the inclined rotating disk. 
This problem was studied by Wang (2007) and Rashidi 
and Dinarvand (2009). 
 
 
MATHEMATICAL FORMULATION 
 
Consider a disk rotating in its plane with angular velocity  (Figure 

1).  The angel between disk and horizontal axis is  . A fluid film 

with the thickness t is formed by spraying, with a velocity .W  
Assume the disk radius is large compared to the thickness of fluid 
film. So, the end effects can be neglected. The gravity acceleration 
g  acts downward. The temperatures on the disk and on the film 

are wT and 0T , respectively. We can consider the pressure as a 

function of z only, because the ambient pressure on the film 

surface is constant 0p . Ignoring the viscous dissipation term, the 

continuity, momentum and energy equations for the steady state 
are given in the following form: 
 

0,x y zu v w                                                                (1) 

 

  sin ,x y z xx yy zzuu vu wu u u u g             (2) 

 

  ,x y z x x yy z zuv vv w v v v v           (3) 

 

  cos / ,x y z xx yy zz zuw vw ww w w w g p                (4) 

 

  .x y z x x y y z zu T v T w T T T T       (5) 

 
In these equations u , v and w denote the velocity components in 

the x , y and z directions, respectively and T indicates the 

temperature,  ,  and  are the density, kinematic viscosity and 

thermal diffusivity of the fluid, respectively. Assuming zero shears 
on the film surface and zero slip on disk, the following boundary 
conditions exist 
 

0 0

, , 0 , at 0,

0 , 0 , , , at .
w

z z

u y v x w T T z

u v w W T T p p z t

      
      

     (6) 

 
The following transforms used for this problem (Wang, 2007). 
 

     
     

 
   0
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s i n / ,

2 ,

,w w

u y g x f g p

v x g y f g s

w f

T T T T

   

   

 

 

      

     

  

  

       (7) 



 
 
 
 
Where 
 

/ .z                                                                             (8) 

 
The conservation law (Equation (1)) is automatically satisfied. The 
Equations (2) to (5) can be written as follow: 
 

 2 2 2 0,f f g f f                                                 (9) 

 

2 2 0,g g f f g                                                           (10) 

 

2 1 0,p p f sg f p                                               (11) 

 

2 0,s g p s f f s                                                     (12) 

 

2 Pr 0.f                                                                    (13) 
 

Where Pr /  is the Prandtl number. The boundary conditions 
for Equations (9) to (13) are 
 

     
   
   
   
   

0 0, 0 0, 0,

0 1, 0,

0 0, 0,

0 0, 0,

0 0, 1.

f f f

g g

p p

s s









  

   

 

 

 

 

                         (14) 

 

Where  is constant normalized thickness 
 

/ .t                                                                              (15) 
 
 
DIFFERENTIAL TRANSFORM METHOD 
 
The differential transform is defined as follows: 
 

0

1 ( )
( ) ,

!

k

k

t t

d x t
X k

k dt


 
  

 
                                                   (16) 

 

where, ( )x t is an arbitrary function, and ( )X k  is the transformed 

function. The inverse transformation is as follows: 
 

    0
0

.
k

k

x t X k t t




                                         (17) 

 
Substituting Equation (16) into Equation (17), we have 
 

     

0

0

0

.
!

k k

k
k t t

t t d x t
x t

k dt



 

 
  

 
                          (18) 

 

The function ( )x t  is usually considered as a series with limited 

terms and Equation (17), can be rewritten as: 
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    0
0

.
m

k

k

x t X k t t


                                                (19) 

 
Where, m represents the number of Taylor series’ components. 
Usually, through elevating this value, we can increase the accuracy 
of the solution.  Some properties of the DTM are shown in Table 1. 
These properties are extracted from Equations (16) and (17). 
 
 
SOLUTION OF THE PROBLEM 
 
Here, we try to solve the Equations (9) to (13) using a new hybrid 
technique. The solution consists of two stages, first through 
mathematical relations and applying DTM, the Taylor series of 
solution is found. After that, the iterative Newton's method applied 
to obtain the unknown parameters. 
 
 
Applying DTM 
 
Each boundary value problem (Equations (9) to (13)) can be 
transformed to an initial value problem with the replacement of the 
unknown initial conditions instead of the boundary conditions at 
end. 
 

         1 2 3 4 50 , 0 , 0 , 0 , 0 .f a g a p a s a a              (20) 

 

By applying the DTM on Equations (9) to (13) at 0  , the 

following recursive relations obtained for calculating the series 
solutions’ coefficients 
 

              

          

0

0 0

1
3 1 1 1 1

1 2 3

2 1 2 2 ,

k

r
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r r

F k r F r k r F k r
k k k

G r G k r r r F r F k r



 

       
   


       





 

   (21) 

 

                
0 0

2
2 1 1 1 1 ,

1 2

k k

r r

G k r F r G k r r G r F k r
k k  

             
     (22) 

 

           

           

0

0 0

1
2 1 1

1 2

2 1 1 ,

k

r

k k

r r

P k r F r P k r
k k

S r G k r r P r F k r k



 


      

       




 

           (23) 

 

         

           

0

0 0

1
2

1 2

1 1 2 1 1 ,

k

r

k k

r r

S k G r P k r
k k

r F r S k r r S r F k r



 


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  


        





 

      (24) 

 

           
0

1
2 2Pr 1 1 .

1 2

k

r

k r r F k r
k k 

            
       (25) 

 

The differential transform of the conditions at 0   in Equations 

(14) and (20) is: 
 
         
         
 

2 3 4 5

1

0 0, 0 1, 0 0, 0 0, 0 0,
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2 .
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     
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
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Table 1. The properties of the DTM. 
 

Original function Transformed function 

     f t g t h t        F k G k H k   

   f t cg t     F k cG k  

   n

n

d g t
f t

dt
       !

!

k n
F k G k n

k


   

     f t g t h t       
0

k

r

F k G r H k r


   

  nf t t     
1

0

if k n
F k k n

if k n



    

 

 
 
 
Substituting Equation (26) into Equations (21) to (25) for k=0,1,… , 
we have: 
 

  2 3 4 2 5 6 71
2 2 1 2 1

1 1 1 1 1 1
,

2 6 12 60 360 2520 630

a
f a a a a a               

 


   (27) 

 

  3 4 5 2 2 6
2 1 1 2 2 1 2

1 1 1 1 1 1
1 ,

3 12 12 15 90 45
g a a a a a a a                   

   


    (28) 

 

  2 3 4 5 6
3 4 2 4 1 3 2 3

1 1 1 1 1 1 1
,

2 6 12 40 60 720 72
p a a a a a a a a                    

   


   (29) 

 

  3 4 5 6
4 3 2 3 4 2 2 4

1 1 1 1 1 1
,

6 12 24 60 40 72
s a a a a a a a a                  

   


        (30) 

 

   4 5 6 2 2 7
5 1 5 5 2 5 1 2 5

1 1 1 1
.

1200 6000 18000 126000
a a a a a a a a a            

    (31) 

 
 
Applying Iterative Newton's method 
 
Now, we have to obtain the unknown parameters from the 
boundary conditions at the end (Equation (14)) and substituting 

   in Equations (27) to (31). Regarding this, we define the 

following residual functions to minimize them for obtaining the 
unknown parameters: 
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






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 (32) 

 

The above functions must be zero to get the values 1a to 5a . To 

obtain the roots of the Equation (32), we use the following multi-
variable iterative Newton's method: 

1
1 1 11 1

1 52 2 2

3 3 3

5 54 4 4

1 55 5 51

, 0,1, 2, .

nn n n

a a RR R

a aa a R

a a R n
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a aa a R
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        
             
             



   



    (33) 

 

After guessing the initial values for 1a to 5a , we have to calculate 

the residual vector (R) and Jacobian Matrix ( i

j

R

a




). The residual 

vector can be obtained by substituting  1 5, ...,
n

a a  in Equation 

(32). The elements of the Jacobian matrix in Equation (33) can be 

computed by differentiating analytically with respect to 1a to 5a and 

then substituting  1 5, ...,
n

a a in that equation. The Jacobian 

elements are presented in the appendix A for 1  and Pr=1. 

 
 
RESULTS 
 
The accuracy chosen for computing 1a to 5a  by Newton's 

method was 610 . Figures 2 and 3 demonstrate graphical 
representation of the presented results and numerical 
solution to show the efficiency and accuracy of the hybrid 
proposed method. In these figures, the present results 
compared with the numerical solution by the Runge-Kutta 
method. The approximate solution of the problem is 
presented in Table 2 for Pr=1. The values of the unknown 

parameters 1 2 3 4, , ,a a a a and 5a  presented in Table 3 for 

Pr=5 and different thickness numbers. These values can 
be substituted in Equations (27) to (31) to obtain the 
approximate solution of the problem. All of the initial 
guesses for 1a to 5a  considered 1. The history of the 

convergence is shown in Figure 4 for a special case. As 
we can see in  Figure   6 the  problem  converged  rapidly  
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Table 2.The approximate solutions        , , ,f g p s    and    when Pr=1. 

 

Solutions Approximate solution 

   2 3 4 5 6 7 80.2412 0.1667 0.0066 0.0001 0.0013 0.0004 0.0000f                

   3 4 5 6 7 81 0.0787 0.1608 0.0865 0.0052 0.0027 0.0016 0.0004g                 

0.5     3 4 5 6 7 80.0401 0.0823 0.0449 0.0026 0.0000 0.0003 0.0000s                 

   2 3 4 5 6 7 80.4941 0.5 0.0067 0.0002 0.0038 0.0008 0.0001 0.0004p                  

   4 5 6 7 82.0080 0.0807 0.0335 0.0009 0.0037 0.0033              

  

   2 3 4 5 6 7 80.3489 0.1667 0.0311 0.0023 0.0019 0.0008 0.0001f                

   3 4 5 6 7 81 0.3720 0.2355 0.1052 0.0248 0.0086 0.0031 0.0009g                 

1     2 3 4 5 6 7 80.8933 0.5 0.0380 0.0071 0.0028 0.0032 0.0008 0.0008p                  

   3 4 5 6 7 80.2281 0.1489 0.0693 0.0131 0.0012 0.0004 0.0003s                 

   4 5 6 7 81.0445 0.0615 0.0174 0.0022 0.0042 0.0025              

 
 
 

Table 3.The values of 1 2 3 4, , ,a a a a and 5a obtained by iterative Newton's method when Pr=5. 

 

Solutions 1a  2a  3a  4a  5a  

0.1   0.0999 -0.0006 0.0999 -0.0003 10.0003 

0.2   0.1998 -0.0053 0.1999 -0.0027 5.0026 

0.3   0.2986 -0.0178 0.2995 -0.0089 3.3422 

0.4   0.3940 -0.0416 0.3980 -0.0210 2.5209 

0.5   0.4825 -0.0787 0.4941 -0.0401 2.0399 

0.6   0.5594 -0.1285 0.5862 -0.0667 1.7329 

0.7   0.6208 -0.1879 0.6726 -0.1003 1.5279 

0.8   0.6647 -0.2519 0.7522 -0.1395 1.3885 

0.9   0.6921 -0.3149 0.8249 -0.1823 1.2956 

1   0.7057 -0.3730 0.8910 -0.2272 1.2423 

 
 
 
problems (BVPs) and it is essential to find the powerful 
analytical, approximate and numerical methods for 
solving this type of differential equations. The steady 
state condensation film on the inclined rotating disk is 
one of the mechanical problems which governing 
equations of it can be formulated as nonlinear system of 
boundary value problems. Here, a hybrid procedure is 
proposed to solve the differential equations of problem. 
This technique is based on differential transform method 
and Newton’s iterative method as a combination of 
analytical and numerical methods. The results of this 
technique   can   be   obtained  as  a  polynomial  function 

(Taylor  series  with limited terms). This is one of the 
advantages of method.  The rapid convergence of 
solution is also significant. 
 
 

Conclusion 
 

In this paper, a similarity transformation is used to reduce 
the governing equations of condensation film on an 
inclined rotating disk by a set of nonlinear boundary value 
problems. This problem is solved using a new hybrid 
technique based on differential transform method (DTM) 
and Iterative Newton's Method  (INM).  Using the method, 
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Figure 4.The history of the iterative Newton's method when 1   and Pr=5. 

 
 
 
the differential equations and boundary conditions are 
transformed into a recurrence set of equations. After 
finding Jacobian matrix, the unknown parameters 
computed using multi-variable iterative Newton's method. 
Finally, the approximate solution is obtained. The main 
objective of the present research paper is to introduce a 
powerful and simple technique as a high accuracy and 
efficient method for solving a set of nonlinear boundary 
value problems. The accuracy and efficiency of proposed 
technique is verified by the numerical results. 
 
 
NOMENCLATURE 
 
DTM: Differential transformation method 
g : Gravity acceleration 

0p : Pressure on the film surface 

Pr : Prandtl number 
T: Temperature 

wT : Disk temperature 

0T : Film temperature 

t: Thickness 
u: Velocity component in x direction 
v: Velocity component in y direction 
w: Velocity component in z direction 
 
Greek symbols 
 
 : Angular velocity 
 : Angel between disk and horizontal disk 

 : Density 

 : Kinematic viscosity 
 : Thermal diffusivity 

 : normalized thickness 
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Appendix A 
 
Here, the elements of the Jacobian matrix /i jR a 
presented for  1   and Pr=1: 

2
2 2

1 1 11
(1,1) ,

180 15 12
J a a     

1 2 1 2

1 1 2 44
(1,2) ,

90 15 3 45
J a a a a      

(1,3) 0,J   

(1,4) 0,J   

(1,5) 0,J   

1 2 1 2

1 2 221 46
(2,1) ,

18 15 630 45
J a a a a       

2 2
2 1 2 1

1 1 4 221 2
(2,2) ,

15 36 15 630 3
J a a a a        

(2,3) 0,J   

(2,4) 0,J   

(2,5) 0,J   

1 4 2

1 1 1
(3,1) ,

35 36 8
J a a a      

4 3 4 1 2 3 2

1 1 1 2 1 1
(3,2) ,

3 12 36 45 105 90
J a a a a a a a       

 

2
2 2

1 1 11
(3,3) ,

45 12 12
J a a      

1 2 2

1 1 179
(3,4) ,

36 3 360
J a a a     

(3,5) 0,J   

2 2 3

1 1 1
(4,1) ,

84 36 360
J a a a     

3 4 4 2 1 3 1

1 1 2 1 1 1
(4,2) ,

3 12 45 36 84 8
J a a a a a a a      
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2 1 2

1 1 179
(4,3) ,

3 36 360
J a a a     

2
2 2

1 1 11
(4,4) ,

12 45 12
J a a      

(4,5) 0,J   

5 1 5

1 437
(5,1) ,

63 5040
J a a a    

5 2 5

1 1
(5,2) ,

630 180
J a a a    

(5,3) 0,J   

(5,4) 0,J   

2 2
1 2 2 1

437 1 1 1 61
(5,5) .

5040 180 1260 126 60
J a a a a      

 
 


