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More than 70% of earth’s surface is covered by cold ecosystems and these ecosystems have been 
colonized by a class of extremophilic microorganisms called as psychrophiles. Thus psychrophiles are 
true extremophiles that has the ability to live in extremely low temperature conditions. Psychrophilic 
yeasts are important due to their physiological adaptation at low temperature and they have potential 
application in biotechnology. Psychrophilic yeast produces cold-active enzymes having numerous 
applications in textile, medical and pharmaceuticals, fine chemical synthesis, food industry, domestic 
and environmental applications. Psychrophilic enzymes from yeast have attracted attention of 
researchers to explore the new application of these enzymes because of their high activity at low and 
moderate temperatures. The present review describes various immune biotechnological applications of 
different cold-active enzymes produced by psychrophilic yeast in different industries. 
  
Key words: Extremophilic microorganisms, cold-active enzymes, environmental applications. 

 
 
INTRODUCTION 
 
Microorganisms which are able to grow at low 
temperature have been known for long time (Morita, 
1966; Farrell and Rose, 1967). Psychrophiles are the 
microorganisms that have colonized all permanent cold 
environments. Psychrophilic organisms have been 
classified in two groups:  
 
i) Which are obligate  psychrophiles  with  optimal  growth  

temperature of ≤ 20°C.  
ii) Which are facultative psychrophiles with optimal 
growth temperature of > 20°C (Stokes, 1963). 
 
Cold-adapted microorganisms can grow at 0°C and are 
classified as psychrophilic if their optimum and maximum 
temperatures for growth are ≤15 and ≤ 20°C, 
respectively, or as psychrotolerant (psychrotrophic) if 
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their maximum temperature for growth is above 20°C 
(Robinson, 2001; Gounot, 1986). Psychrotolerant 
microbes have an optimum growth temperature between 
20 and 40°C, but are also capable of growth at 0°C 
(Morita, 1975). As the name suggests, these are cold 
loving microbes that are commonly found in Polar region 
and also in deep sea, mountains, glaciers, fresh and 
marine waters, polar and high alpine soils, all together 
constituting about three-fourth of the biosphere. These 
organisms produce cold evolved enzymes that are 
partially able to cope with the reduction in chemical 
reaction rates induced by low temperatures (D'Amico et 
al., 2002). The mesophilic yeasts grow between 5 to 
35°C. In comparison, the psychrophilic yeasts grow 
below 5°C and exhibit no growth above 20°C (Shivaji and 
Bhaskar, 2008). As a group the mesophilic yeasts are the 
most predominant and constitute the vast majority of the 
yeasts studied so far as compared to psychrophilic and 
thermophilic yeasts. Cold-active enzyme might offer 
novel opportunities for biotechnological exploitation 
based on their high catalytic activity at low temperature, 
low thermo stability and unusual specificities (Russell, 
2000). 

Because of potential biotechnological applications, 
cold-adapted microorganisms have become increasingly 
studied in recent years, of the microorganisms most 
isolated and studied from cold environments, the majority 
are bacteria, while yeasts constitute a minor 
proportion (Margesin and Miteva, 2011). Oceans 
represent 71% of earth’s surface and 90% by volume, 
which are at 5°C. It has been estimated that more than 
90% (by volume) of the marine water masses are colder 
than 4°C (Morita, 1966). Antarctica is considered the 
coldest and driest terrestrial habitat on Earth. It is 
covered almost totally with ice and snow, and receives 
high levels of solar radiation (Holdgate, 1977). 

The range of species within a particularly cold habitat 
reflects many different parameters (for example, primary 
nutrient, ability to withstand desiccation, pH, salinity) to 
which an organism must adapt (Blaise et al., 2004). 

In this review, we focus on psychrophilic yeast and their 
cold-active enzymes having biotechnological applications 
in different industries like; detergent, medical and 
pharmaceuticals, fine chemical synthesis, food, textile, 
and domestic industries.  
 
 
PSYCHROPHILIC YEASTS AND THEIR HABITATS 
 
Psychrophiles are more likely to be found in permanently 
cold environments such as polar region (Sabri et al., 
2001), marine environment and deep water (D′Amico et 
al., 2006). Psychrophilic yeasts have been isolated from 
marine waters, Arctic and Alpine glaciers, and Antarctic 
ecosystems; their occurrence and abundance in these 
environments have been described (Vishniac, 1999; Díaz  
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and Fell, 2000; Bergauer et al., 2005; Buzzini et al., 
2005). Most of the work particularly on psychrophilic 
yeast and their cold-active enzymes have been reported 
from Antarctica. The first report of Antarctic yeasts was 
published 50 years ago (Menna, 1960) current reports 
have focused on cold-tolerant bacteria and archaea, with 
yeasts receiving less attention. The occurrence of 
psychrophilic yeasts has been reported in glacial melt-
water rivers originating from glaciers of Argentinean 
Patagonia (García et al., 2007). Butinar et al. (2007) 
reported the occurrence of viable yeasts in the different 
ice layers of Arctic glaciers located in the Svalbard 
Islands Norway. 

In these environments, psychrophilic and psychro-
trophic microorganisms are believed to play key roles in 
the biodegradation of organic matter and the cycling of 
essential nutrients (Welander, 2005; Lambo and Patel, 
2006; Ruberto et al., 2005). Psychrophilic yeasts, 
particularly Cryptococcus sp. have been isolated 
repeatedly from soil samples and some researchers have 
described them as the most important life form in 
Antarctic desert soils (Vishniac and Klinger, 1986). 
Yeasts dwelling in Antarctic and Sub-Antarctic maritime 
and terrestrial habitats belong mainly to the 
Cryptococcus, Mrakia,  

Candida and Rhodotorula genera (Buzzini et al., 2012; 
Vaz et al., 2011). The presence of organic carbon and 
nitrogen sources in waters, originated from melting 
glacier ice, have been demonstrated and the occurrence 
of yeast strains degrading a variety of organic 
compounds including polysaccharides, esters, lipids and 
pectin’s have been observed in the yeasts isolated from 
Alpine glacier environments (Skidmore et al., 2000; 
Margesin et al., 2002). 

Other than Antarctic, psychrophilic yeast C. capitatum 
SPY11 were isolated from the soil of northern region of 
India Kashmir valley; the yeast was able to grow up to 
20°C above which it couldn’t grow normally (Hamid et al., 
2012). Shivaji and Bhaskar (2008), reported novel 
psychrophilic yeast Rhodotorula Himalayans sp. Nov; 
isolated from a Roopkund lake of Himalayan mountain 
range. 
 
 
BIOTECHNOLOGICAL APPLICATION OF COLD-
ACTIVE ENZYMES 
 
Extremophiles are a potent source of extremozymes, 
which show outmost stability under extreme conditions. 
Consequently, much attention has been given to the 
microorganisms that are able to thrive in extreme 
environments. Thus, biocatalysis using extremophiles as 
well as extremozymes is rapidly being transformed from 
an academic science to an industrially viable technology. 
Each group of the extremophiles has unique features, 
which can be harnessed to provide enzymes with  a  wide 
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range of application possibilities (Adams et al., 1995; 
Hough et al., 1999). Microbial enzymes are also more 
stable than their corresponding plant and animal 
enzymes and their production is more convenient and 
safer (Wiseman, 1995). Psychrophiles produce cold-
adapted enzymes that have high specific activities at low 
temperatures (Feller and Gerday, 2003). These enzymes 
have the ability to support transcription and translation at 
low temperatures (Goodchild et al., 2004).  Psychrophilic 
enzymes isolated from psychrophilic yeasts exhibit high 
activity at low and moderate temperatures and thus offer 
potential economic benefits (Allen et al., 2001). 
Kourkoutas et al., (2002) reported that psychrophilic 
yeast can be used in low temperature fermentation. Cold-
active or cold-adaptive enzymes have attracted great 
attention as biocatalysts because they have the ability to 
resist quite unfavorable reaction conditions in industry 
(Deming, 1998; Singh et al., 2012; Sahay et al., 2013). 
Psychrophilic and psychrotolerant microorganisms and 
their unique cold shock and cold-acclimation proteins and 
enzymes (for example, proteases, lipases and cellulases) 
having a host of biotechnology applications (Gounot, 
1991).  Industrially interesting enzymes that are screened 
from yeasts are lipase / esterase, amylase, cellulase and 
β-glucosidases (Middelhoven, 1997; Laitila et al., 2006; 
Kudanga et al., 2007; Strauss et al., 2001; Buzzini and 
Martini, 2002; Rodríguez et al., 2004). 

There are nearly 4000 enzymes known today and of 
these about 200 are in commercial use (Sharma et al., 
2001). As a rule, enzymes produced by microorganisms 
existing in cold environments display higher catalytic 
efficiency at low temperatures and greater thermo 
sensitivity than their mesophilic counterparts (Gerday et 
al., 1997). Psychrophilic yeast has been reported to be 
used in low temperature fermentation (Pfeffer et al., 
2006; Liu et al., 2006; Kourkoutas et al., 2002). The high 
activity of psychrophilic enzymes at low and moderate 
temperatures offers potential economic benefits 
(Cavicchioli et al., 2002). There is an industrial tendency 
to treat foodstuffs under mild conditions in order to avoid 
spoilage, and changes in taste and nutritional value at an 
ambient temperature. Therefore, cold-active enzymes are 
used for processing foods, (Margesin and Schinner, 
1994; Russell and Hamamoto, 1998; Gerday et al., 
2000). Cold-active enzymes with unique molecular 
adaptabilities (Feller and Gerday, 1997) have opened up 
potential newer areas of applications (Singh et al., 2012; 
Sahay et al., 2013). Processes catalyzed by cold-active 
enzymes have two advantages, they have potential to 
economise the processes by saving energy (Deming, 
1998; Cavicchioli et al., 2002), and they protect the 
processes from contamination (Gardey et al., 2000). Over 
91 basidiomycetous yeasts (belonging to the genera 
Cryptococcus, Leucosporidiella, Dioszegia, Mrakia, 
Rhodotorula, Rhodosporidium, Sporobolomyces, 
Sporidiobolus,   Cystofilobasidium   and   Udeniomyces)  

 
 
 
 
have been screened for extra cellular amylolytic, 
protolytic, lepolytic, esteric, pectinolytic, actenolytic 
activities (Brizzio et al., 2007).  These findings suggest 
that cold environments of Patagonia (Argentina) may be 
considered as a potential source of cold adapted yeasts 
producing industrially relevant cold-active enzymes 
(Brizzio et al., 2007).  The majority of the industrial 
enzymes are of microbial origin. Several microbes are 
capable of using these substances as carbon and energy 
sources by producing a vast array of enzymes in different 
environmental niches (Kaur et al., 2004; Antranikian, 
1992). 

The ability to heat-inactivate cold-active enzymes has 
particular relevance to the food industry where it is 
important to prevent any modification of the original heat-
sensitive substrates and product. This is also of benefit in 
sequential processes (example, molecular biology) where 
the actions of an enzyme need to be terminated before 
the next process is undertaken; with cold-adapted 
enzymes this might be accomplished by heat inactivation 
rather than chemical extraction (Russell et al., 1998; 
Gerday et al., 2000). Cold-active enzymes from psychro-
philic yeasts can be applied to the food industry, for 
clarification of fruit juice at low temperature.  

The enzymes from microorganisms are used in various 
industries such as dairy, food, detergents, textile, 
pharmaceutical, cosmetic and biodiesel industries, and in 
synthesis of fine chemicals, agrochemicals and new 
polymeric materials (Saxena et al., 1999; Jaeger and 
Eggert, 2002). Several yeast strains have been explored 
in regards to the biological treatment of industrial and 
domestic waste water (Thanh and Simard, 1973; Ohno et 
al., 1991). Katayam et al. (1997) reported psychrophilic 
yeast Candida sp. which was isolated from water 
samples from Lake Vanda in Antarctica it can be used for 
the treatment of dissolved organic matter at low 
temperatures.  

In recent years, the potential of using microorganisms 
as biotechnological sources of industrially relevant 
enzymes has stimulated interest in the exploration of 
extracellular enzymatic activity in several microorganisms 
(Akpan et al., 1999; Abu et al., 2005). The properties of 
cold-active enzymes provide numerous avenues for 
industrial application; however, specific properties may 
be improved through enzyme engineering. 
 
 
Pectinases 
 
Pectinolytic enzymes or pectinases are a heterogeneous 
group of enzymes that hydrolyze the pectic substances 
present in plants. They include polygalacturonases (PG), 
pectin lyase (PL), and pectin esterase (PE) that hydrolyze 
the glycosidic bonds of pectic substances (Fogarty and 
Kelly, 1983). Psychrophilic yeast strains C. cylindricus 
and M. frigida  have been  isolated  from  soil  of  Abashiri  



 

 

 
 
 
 
(Nakagawa et al., 2004). The isolated strains can grow 
on pectin as the only carbon at below 5°C and showed 
the activities of several cold-active pectinolytic enzymes 
(Nakagawa et al., 2004).  

Eight cold-adapted polygalactu-ronase producing 
yeasts have been isolated from frozen environmental 
samples of Iceland, which belong to C. larimarini, C. 
capitatum, C. macerans and C. aquaticus (Birgisson et 
al., 2003). It have been demonstrated that yeasts such as 
Kluyveromyces wickerhamii (Moyo et al., 2003) and 
moulds such as Aspergillus niger CH-Y-143 (Aguillar and 
Huitron, 1990), are capable of producing 
polygalacturonases constitutively. 

The cold-active pectinolytic enzymes (Pectin 
methylesterase PME, endo-PG and exo-PG) from the 
newly isolated and identified psychrophilic yeast C. 
capitatum SPY11 and psychrotolerant yeast R. 
mucilaginosa PT1that exhibited 50 to 80% of their 
optimum activity under some major ecological conditions 
pH (3 to 5) and temperatures (6 and 12°C) could be 
applied to wine production and juice clarification at low 
temperature (Sahay et al., 2013). Pectinolytic enzymes 
are used for the degradation of pectin compounds in the 
fruit and vegetable processing industries (Alkorta et al., 
1998). Cold-active pectinolytic enzymes are required in 
wine industries both for extraction and for clarification 
(Merin et al., 2011). Cold-active pectinases in addition 
has potential to maintain nutritional value, taste and 
sensory features (Nakagawa et al., 2002). 

Most studies that involve the screening of yeasts for 
enzyme production target proteinase or pectinase, mainly 
because these are important enzymes used to clarify fruit 
juices (Braga et al., 1998). Earlier cold-active pectinase 
produced by psychrophilic yeast C. capitatum strain PPY-
1 (Nakagawa et al., 2002) had been reported; these 
enzymes may be used for processing foods (Margesin 
and Schinner, 1994; Russell et al., 1998; Gerday et al., 
2000). It have been reported that PPY (Pectinolytic-
psychrophilic yeast) were examined for pectinolytic 
activities at 5°C and strains exhibited pectin esterase 
activities (Nakagawa et al., 2004). Six psychrophilic 
fungal isolates has been reported earlier from the new 
geographical region of Jammu and Kashmir, India as a 
source of cold-active pectinolytic activities of oenological 
grade (Singh et al., 2012).  
 
 
 
Lactases 
 
Lactose is the main part of daily intake carbohydrate. β-
Galactosidase hydrolyzes lactose into glucose and 
galactose, so it’s commercially called lactase (Shukla and 
Wierzbiciki, 1975). Hamid et al. (2013) reported that 
psychrophilic yeast C. capitatum SPY11 and psychro-
tolerant yeast R. mucilaginosa PT1 strains produce cold- 
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active β-galactosidases that are able to degrade lactose 
at low temperature; β-galactosidase activity of both 
strains was found highest at 4°C, thus reflecting  the 
nature of  cold active enzymes. The β-galactosidase 
enzyme produced by these strains will have potential 
application at low temperature in dairy as well as in 
biotechnological industries.  

Use of cold-active lactase has added advantage to 
catalyze lactose hydrolysis at storage temperature (that is 
4°C) with no extra effort to change place and at the same 
time no risk of contamination which is possible at higher 
temperature. A number of important genes coding for 
cold-active β-galactosidase have been detected in yeast 
(Nakagawa et al., 2006a, b). Therefore, cold-active 
lactases have recently been attracting attention, as there 
is an increasing industrial trend to treat dairy products 
under mild conditions to avoid spoilage and changes in 
the taste and nutritional value, and cold-active lactase 
can be inactivated at a low temperature without heat 
treatment (Margesin, and Schinner, 1994). The 
psychrotrophic yeasts (PPY-1) C. capitatum with β-
galactosidase activity have been isolated (Nakagawa et 
al., 2002). It has been reported that A. psychrolactophilus 
strains B7, D2 and D5 produce cold-active β-
galactosidase (Loveland et al., 1993). Cold-adapted β-
galactosidase with high activity levels at low 
temperatures might prove to be useful for removing 
lactose from refrigerated milk enabling it to be consumed 
by lactose intolerant individuals, and for converting 
lactose in whey into glucose and galactose. K. lactishas 
been used for its industrial potential in the production of 
β-galactosidase enzyme which could be used to reduce 
the lactose content of milk (Suarez et al., 1995). 
 
 
Amylases 
 
Amylases are enzymes that hydrolyze starch molecule to 
give diverse products including dextrin and progressively 
smaller polymers made up of glucose units (Pandey et 
al., 2000; Syed et al., 2009). Amylases have been 
estimated to comprise approximately 30% of the world’s 
enzyme production (Maarel et al., 2002). These enzymes 
can be divided basically into four groups: endoamylases, 
exoamylases, debranching enzymes and transferases 
(Maarel et al., 2002). Though amylases originates from 
different sources (plants, animals and microorganisms), 
the microbial amylases are the most produced and used 
in industry, due to their productivity and thermo stability 
(Burhan et  al., 2003). Fungi, bacteria and yeasts have 
been reported to produce these enzymes (Salvakumar et 
al., 1996). 

Amylases are one of the most important industrial 
enzymes that have a wide variety of applications ranging 
from conversion of starch to sugar syrups, to the 
production  of   cyclodextrins   for   the    pharmaceutical  
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industry (Maarel et al., 2002; Satyanarayana et al., 2005). 
Processes catalyzed by cold-active enzymes have two 
advantages: they have potential to economise the 
processes by saving energy (Deming, 1998; Cavicchioli 
et al., 2002), and they protect the processes from 
contamination (Gardey et al., 2000). Mould amylases are 
used in alcohol production and brewing industries (Van 
and Smith, 1968). Amylases are significant enzymes for 
their specific use in the industrial starch conversion 
process (Nigam and Singh, 1995). 

Amylases have been found in many yeast species 
(Gupta et al., 2003; De Mot et al., 1984) including 
Lipomyces kononenkoae (Prieto et al., 1995), 
Schwanniomyces alluvius (Wilson and Ingledew, 1982; 
Moranelli et al., 1982), Trichosporon pullulans (De Mot 
and Verachtert,  1986), Candida antarctica (De Mot and 
Verachtert  1987) and C. flavus (Wanderley et al., 2004). 
A cold active α-amylase from Antarctic psychrophile 
Alteromonas haloplanktis was reported to exhibit 
maximum α-amylase production at 4°C (Ramachandran 
et al., 2004; Hayashida and Teramoto, 1986; Moller et al., 
2004). A mutant strain of yeast (S. cerevisiae) has been 
found to secrete amylases (Wang et al., 2001).   
 
 
Proteases 
 
Proteases represent one of the three largest groups of 
industrial enzymes and have traditionally held the 
predominant share of the industrial enzyme market 
accounting for about 60% of total worldwide sale of 
enzymes (Rao et al., 1998). Cold active proteases have 
found their way into many applications like in industries of 
detergents, food, textiles, cosmetics, beverages, 
pharmaceutical, bioremediation and bakery (Hamamoto 
et al., 1994; Baghel et al., 2005; Anwar and 
Saleemuddin, 1998; Gupta et al., 2002). 

Cold-adapted or low temperature tolerant proteases 
suit well in waste management in cold environments, 
where the degradation capabilities of endogenous 
microflora are reduced due to low temperatures. Probably 
the largest application of proteases is in laundry 
detergents, where they help in removing protein based 
stains from clothes (Banerjee et al., 1999). 
Psychrotrophic, dimorphic yeast Candida humicola, 
isolated from Antarctic soil, secretes an acidic protease 
into the medium (Ray et al., 1989). Earlier studies have 
indicated that yeasts belonging to the genera 
Kluyveromyces, Endomycopsis, Cephalosporium, 
Aureobasidium, Saccharomycopsis, Rhodotorula, 
Candida and most sporobolomycetes and trichosporons 
secrete proteolytic enzymes (Ahearn et al., 1986). Many 
of these yeasts are probably also psychrotrophic (Ahearn 
et al., 1986), but the proteolytic enzymes secreted by 
them has been neither purified nor characterized. Cold-
adapted proteases thus can be used  to  optimize present  

 
 
 
 
day industrial processes and for developing future 
technologies with less energy inputs and process cost by 
removing the cost of heat inactivation step (Cavicchioli  et 
al., 2002; Deming,  2002; Margesin et al.,  2002). 
 
 
Phytases 
 
Phytase is an enzyme that releases digestible 
phosphorus, calcium and other nutrients from phytic acid 
(myo-inositol hexakisphosphate) and thereby, help to 
reduce environmental phosphorus pollution (Mllaney et 
al., 2000). Phytases are found naturally in plants and 
microorganisms, particularly fungi (Stanley, 1961; 
Somoilova, 1980; Valikhanov et al., 1981; Wang et al., 
1980). Several yeast species have been screened for 
their extracellular phytase activity and it was also 
reported that yeasts are important source of phytases 
(Nakamura et al., 2000; Vohra and Stayanarayan, 2001; 
Wodzinski and Ullah, 1996). Cold-active phytases from 
psychrophilic yeasts will help in reducing the phosphorus 
pollution in the cold environments. Earlier reports also 
attest the stability of yeast phytate (Quan et al., 2001) 
from C. krusei. 

Phytase is already used as a supplement in diets for 
monogastric animals to improve phosphate utilization 
from phytate, the major storage form of phosphate in 
plant seeds. In recent years, this class of enzymes has 
also been found increasingly interesting for use in 
processing and manufacturing of food for human 
consumption, particularly because the decline in food 
phytate results in an enhancement of mineral 
bioavailability. Different strategies could be applied to 
optimize phytate degradation during food processing and 
digestion in the human alimentary tract such as 
adjustment of more favourable conditions during food 
processing for the phytases naturally occurring in the raw 
material, addition of isolated phytases to the production 
process, use of raw material with a high intrinsic phytate-
degrading activity either naturally present or introduced 
by genetic engineering and the use of recombinant food-
grade microorganisms as carriers for phytate-degrading 
activity in the human gastrointestinal tract (Greiner and 
Konietzny, 2006). Furthermore, phytases may find 
application in the production of functional foods or food 
supplements with health benefits.  
 
 
Lipases 
 
Lipases are a class of enzymes which catalyze the 
hydrolysis of long chain triglycerides and constitute the 
most important group of biocatalysts for biotechnological 
applications (Joseph et al., 2007). Lipases were first 
discovered in 1856 by Claude Bernard when he studied 
the role  of  the  pancreas in fat  digestion  (Peterson  and  



 

 

 
 
 
 
Drablos, 1994). Lipolytic enzymes are grouped into three 
main categories, which are esterases, phospholipases 
and lipases (Arpigny and Jaeger, 1999). Permanently 
cold regions such as glaciers and mountain regions are 
another habitat for psychroplillic lipase producing 
microorganisms (Joseph, 2006). Microbial lipases are 
also more stable than their plant and animal derivatives 
and their production is easier and safer for industrial and 
research applications (Schmidt-Dannert, 1999). 

Although a number of lipase producing sources are 
available, only a few bacteria and yeast were exploited 
for the production of cold adapted lipases (Joseph, 2006). 
Psychrotrophic fungi such as Rhizopus sp., Mucorsp., 
have been reported to produce cold active lipases 
(Coenen, 1997). An extensive research has been carried 
out in the cold active lipase of C. antarctica compared to 
other psychrophilic fungi. Use of lipase B from C. 
antarctica for the preparation of optically active alcohols 
has been reported (Rotticci et al., 2001). Lipase from C. 
antarctica has been evaluated as catalyst in different 
reaction media for hydrolysis of tributyrin as reaction 
model (Salis et al., 2003). C. lipolytica, G. candidum and 
P. roqueforti have been isolated from frozen food 
samples and reported to produce cold active lipases 
(Alford and Pierce, 1961). 

Cold active lypolytic enzymes are currently attracting 
an enormous attention because of their biotechnological 
potential (Benjamin and Pandey, 1998). Psychrophilic 
enzymes are highly approached for different industrial 
applications; it has been reported that alkaline yeast 
lipases are preferred because they can work at lower 
temperatures as compared to bacterial and fungal lipases 
(Ahmed et al., 2007; Saxena et al., 1999). Various 
industrial applications of cold-active microbial lipases in 
the medical and pharmaceuticals, fine chemical 
synthesis, food industry, domestic and environmental 
applications have been reported (Joseph et al., 2007). 
Cold active lipase A and lipase B from Candida 
antarctica have been expressed in C. antarctica and E. 
coli, respectively, for their biotechnological applications 
(Pfeffer et al., 2006; Liu et al., 2006). Research on 
microbial lipases, has increased due to their great 
commercial potential (Silva et al., 2005). Cold-active 
lipases could be a good alternative to mesophillic 
enzymes in brewing industry and wine industries, cheese 
manufacturing, animal feed supplements and so on 
(Collins et al., 2002). 
 
 
Xylanases 
 
Xylan is the major component of hemicellulose consisting 
of β-1, 4-linked D-xylopyranosyl residues. The hydrolysis 
of xylan in plant materials is achieved by the use of a 
mixture of hydrolytic enzymes including endo-β-1, 4-
xylanase  and  β-D-xylosidase  (Polizeli et al., 2005).  The  
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importance of xylanase has tremendously increased due 
to its biotechnological applications for pentose 
production, fruit-juice clarification, improving rumen 
digestion and the bioconversion of lignocellulosic 
agricultural residues to fuels and chemicals (Nigam and 
Pandey, 2009; Srinivasan and Rele, 1995; Garg et al., 
1998). 

Xylanase from an Antarctic yeast C. adeliae that 
exhibits optimal growth at low temperature has been 
reported (Petrescu et al., 2000). The xylanase from C. 
adeliae is less thermostable than its mesophilic homo-
logue when the residual activities are compared, and this 
difference was confirmed by differential scanning calo-
rimetry experiments. In the range 0 to 20°C, the cold-
adapted xylanase displays lower activation energy and a 
higher catalytic efficiency (Petrescu et al., 2000).  

It has been found that yeast, unlike bacteria, can 
perform certain post translational modifications, such as 
glycosy-lation which particularly affects the enzymatic 
activity of recombinant proteins, as demonstrated for the 
xylanase from yeast C. albidus (Runge et al., 1988). 
Scorzetti et al. (2000) isolated a C. adeliensis sp. nov.  
from Terre Adelie, Antarctica, this produced a cold-active 
xylanase. Amoresano et al. (2000) reported that a 
common folding motif might occur within the entire 
xylanase family isolated from psychrophilic yeast. 
Alkaliphilic xylanases would also be required for 
detergent applications where high pHs are typically used 
(Kamal et al., 2004).Cold-adapted family eight xylanase 
is more efficient in baking than a commonly used 
commercial enzyme (Dutron et al., 2004). Xylanase from 
psychrophilic Coprinus psychromorbidus have been 
reported (Inglis et al., 2000). 
 
 
CONCLUSION 
 
There are a lot of industrial processes to which cold 
active enzymes can be applied to improve the quality and 
the yield of final products. It is important to investigate the 
production conditions and physico-chemical charac-
teristics of psychrophilic enzymes produced by psychro-
philic yeasts. Cold-active enzymes having a set of 
biochemical and physical properties can be generated for 
each specific industrial process. These studies can 
provide valuable tools for biotechnologists and microbio-
logists to improve microorganisms and make them able 
to produce efficient cold-active enzymes. More studies 
are required to find out newer venues of applications as 
the field of cold active enzymes is yet at infancy. 
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