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Using the infinitesimal theory of elasticity, closed form solutions for one-dimensional steady-state 
thermal stresses in a rotating functionally graded (FGM) pressurized thick-walled hollow circular 
cylinder are obtained under generalized plane strain and plane stress assumptions, respectively. The 
material properties are assumed to vary nonlinearly in the radial direction and the Poisson’s ratio is 
assumed constant. The temperature distribution is assumed to be a function of radius, with general 
thermal and mechanical boundary conditions on the inside and outside surfaces of the cylinder. The 
direct method is used to solve the heat conduction and Navier equations. The steady-state temperature, 
displacements and stresses distributions depending on an inhomogeneity constant are compared with 
those of the homogeneous case and presented in the form of graphs. The values used in this study are 
arbitrary chosen to demonstrate the effect of inhomogeneity on displacements, and stresses distribu-
tions. 
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INTRODUCTION 
 
The research on the prediction of stresses in rotating 
thick hollow cylinder has never ceased because of the 
importance of these basic structures in numerous mecha-
nical, civil, electrical and computer engineering applica-
tions. Plane strain and plane stress analytical solutions of 
thick hollow cylinder problems in the elastic stress state 
have been available for many years in standard and 
advanced textbooks (Rees, 2000; Timoshenko and 
Goodier, 1970; Ugural and Fenster, 2003). Recently, a 
new class of composite materials known as functionally 
graded materials (FGMs) has drawn considerable atten-
tion. FGMs are composite materials that are microsco-
pically inhomogeneous and the mechanical properties 
vary smoothly or continuously from one surface to ano-
ther. Typically, these materials are made from a mixture 
of ceramic and metal or a combination of different mate-
rials. Due to their excellent features, FGMs are finding 
increasing   applications   in   many   engineering  sectors  
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(Noda, 1991; Tanigawa, 1995) especially for working in 
high temperature environments where thermal effects 
due to temperature change must be taken into account. 
Obata and Noda (1994) through the application of a per-
turbation approach, investigated the thermal stresses in 
an FGM hollow sphere and in a hollow circular cylinder. 
The aim of researchers is to understand the effect of 
composition on stresses and to design the optimum FGM 
hollow circular cylinder and hollow sphere. A work was 
also published by Horgan and Chan (1999) where it was 
noted that increasing the positive exponent of the radial 
coordinate provided a stress shielding effect whereas 
decreasing it created stress amplification. Assuming that 
the material has a graded modulus of elasticity, while the 
Poisson’s ratio is a constant, Tutuncu and Ozturk (2001) 
investigated the stress distribution in the axisymmetric 
structures. They obtained the closed-form solutions for 
stresses and displacements in functionally graded cylin-
drical and spherical vessels under internal pressure. 
Based on approximate solutions of temperatures and 
thermal stresses, the optimization of the material compo-
sition of FGM hollow circular cylinders under thermal 
loading was discussed (Ootao et al., 1999). Applying the 
Frobenius series  method,  Zimmerman  and  Lutz (1999)  
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found a way round the problem of the uniform heating of 
functionally graded circular cylinder. They derived the 
exact solution for the problem of radially heated cylinder 
whose modulus of elasticity and thermal expansion 
coefficient vary linearly with radius. Another general ana-
lysis of one-dimensional steady-state thermal stresses in 
a hollow thick cylinder made of functionally graded mate-
rial was obtained (Jabbari et al., 2002). In addition, an 
analysis of the thermo-mechanical behavior of hollow 
circular cylinders of functionally graded materials was 
presented (Liew et al., 2003). They worked out a solution 
based on the solutions obtained by a novel limiting pro-
cess that makes use of the solutions of homogeneous 
hollow circular cylinders, without resorting to the basic 
theory or the equations of non-homogeneous thermo-
elasticity. Tarn and Wang (2004) studied heat conduction 
in circular cylinders of functionally graded materials and 
laminated composites. They focused on the end effects 
and by means of matrix algebra and eigen function 
expansion, the decay length that characterizes the end 
effects on the thermal filed was assessed. In an attempt 
to derive the series solutions of temperature, displace-
ments and thermal/mechanical stresses in a functionally 
graded circular hollow cylinder, assuming that the mate-
rial properties are temperature-independent and radially 
dependent, but homogeneous in each layer, Shao (2005) 
used a multi-layered approach. The theoretical basis was 
taken to be the theory of laminated composites. Pan and 
Roy (2006) derived exact solutions for multilayered FGM 
cylinders under static deformation. They obtained these 
solutions by making use of the method of separation of 
variables and expressed it in terms of the summation of 
the Fourier series in the circumferential direction. Jabbari 
et al. (2007), making use of the generalized Bessel func-
tion and Fourier series solved the temperature and 
Navier equations analytically and offered a general theo-
retical analysis of three-dimensional mechanical and ther-
mal stresses for a short hollow cylinder made of function-
nally graded material. In a study carried out by You et al. 
(2007), the deformations and stresses in thick-walled 
cylindrical vessels made of functionally graded materials 
were obtained. Such vessels have a varying Young’s 
modulus and thermal expansion coefficient and are 
subjected to internal pressure and uniform temperature 
change. Given the assumption that the material is isotro-
pic with constant Poisson’s ratio and exponentially vary-
ing modulus of elasticity through the thickness, Tutuncu 
(2007) obtained power series solutions for stresses and 
displacements in functionally-graded cylindrical vessels 
subjected to internal pressure alone. Argeso and Eraslan 
(2008), assuming the different states of material pro-
perties including Poisson’s ratio, modulus of elasticity, the 
yield strength, the coefficient of thermal expansion and 
thermal conductivity, assessed the thermo-elastic  res-
ponse of cylinders and tubes. In a recent study by Chen 
and Lin (2008), assuming that the property of FGMs is in 
exponential function form, they conducted the elastic 
analyses for both a thick  cylinder  and  a  spherical  pres- 

 
 
 
 
sure vessel which were made of func-tionally graded 
materials. Assuming that thermo-mecha-nical properties 
of functionally graded materials are temperature inde-
pendent and vary continuously in the radial direction of 
the cylinder. Shao and Ma (2008) by making use of 
Laplace transform techniques and series solving method 
for ordinary differential equation, obtained solutions for 
the time-dependent temperature and unsteady thermo-
mechanical stresses in functionally graded circular hol-
low cylinder. 
 
 
MATERIALS AND METHODS 
 

Consider a thick-walled FGM cylinder with an inner radius a , and 

an outer radius b , subjected to internal and external pressures iP  

and oP  that are axisymmetric and rotating at a constant angular 

speed ω  about its axis. The cylindrical coordinates ,(r ,θ )z  are 
considered along the radial, hoop and axial directions, respectively. 
The deformations and stresses in the thick-walled cylinder are 
symmetric. The stress equilibrium equation can be written as: 
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Where rrσ  and θθσ  are the radial and hoop stress components, 

respectively; ρ  is density. 

For the thick hollow cylinder, rrσ  and θθσ  are given in terms of 

the displacement ru  by 
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where )(rE  is modulus of elasticity and 11A , 12A , and 13A  are 

related to Poisson’s ratio υ  as: 
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The substitution of equations (2) and (3) into equation (1) produces 
the Navier equation  
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Solution derived for FGM state 
 
The material properties are assumed to be radially dependent. 
Given that the radial coordinate r  is normalized as arr /= , the 

modulus of elasticity E , density ρ , linear expansion coefficient 

α  and thermal conductivity k  through the wall thickness are 
assumed to vary as follows; 
 

β)()( rErE i=  (7.1) 

µρρ )()( rr i=  (7.2) 
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ξ)()( rkrk i=  (7.4) 
 

 

Here iE , iρ , iα  and ik  are the modulus of elasticity, density, 

linear expansion coefficient and thermal conductivity at the inner 
surface ar =  and β , µ , η  and ξ  are the in-homogeneity 
constants determined empirically. Since the variation of Poisson’s 
ratio,υ  for engineering materials is small, it is assumed constant. 
In the steady state case, the heat conduction equation for the one-
dimensional problem in polar coordinates simplifies to; 
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The thermal boundary condition for an FGM hollow cylinder is given 
as; 
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where aT  and bT  are the temperatures of the surrounding media,  

ah  and  bh  are the heat transfer coefficients, and subscripts a   

Nejad and Rahimi            133 
 
 
 
and b  correspond to surfaces ar =  and br = , respectively. 
The general solution of equation (8) with considering relation of 
thermal transfer coefficient, equation (7.4) and boundary conditions, 
equation (9) is; 
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By substituting equation (10) into equation (6), the Navier equation 
would be; 
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Equation (12) is the non-homogeneous Euler differential equation 

with general and particular solutions whose complete solution ru  
is; 
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where 1m  to 5m  and 3C  to 5C  are as follows; 
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By substituting equation (14) into equations (2) and (3), the result-
ing stress expressions are; 
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For the hollow cylinder submitted to uniform pressures iP  and oP  

on the inner and outer surfaces, respectively, the mechanical 
boundary conditions can be expressed as; 
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Substituting the boundary conditions (18) into equation (16), the 
constants of integration become; 
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Solution derived for homogeneous STATE 
 
The material properties are 
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where superscript “H” represents the homogeneous state. The 
general solution of equation (8) with considering relation of thermal  
transfer coefficient equation (21.4) and boundary conditions (9) is; 
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By substituting equations (21) and (22) into equation (6), the Navier 
equation would be; 
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The complete solution for the above equation is; 
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By substituting the equation (25) into the equations (2) and (3),  the 
steady-state thermal stresses expression for the rotating homo-
geneous pressurized thick hollow cylinder are; 
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The constants 1C′  and 2C′  are determined from the boundary 
conditions (equation 18) as; 
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RESULTS AND DISCUSSION 
 
The analytical solution obtained in this paper may be 
checked for two examples. In the first example, the 
angular speed of the cylinder is considered constant and 
the power law index is considered variable. In the second 
example, the angular speed is considered variable and 
the power law index constant. 
 
Example 1: Consider a hollow functionally graded cylin-
der of inner radius ma 5.0=  and the outer radius 

mb 7.0= , which is rotating around the axisz −  at the 
constant angular speed of sec/50rad=ω . A special 
case is considered in which there is no heat transfer 
taking place between the inner and outer surfaces with 
the surrounding medium ),( ∞→ba hh  and the surface 
temperature at the inner and outer surfaces are prescribed 
as aT  and bT , respectively. The boundary conditions for 

temperature are taken as CT o
a 10= , CT o

b 0= . The 
modulus of elasticity, density and thermal coefficient of 
expansion at the inner radius have the values of 

GPaEi 200= , 3/7860 mkgi =ρ , Co
i )/10(12 6−=α , 

respectively. It is also assumed that the Poisson’s ratio 
υ , has a constant value of 0.3. The applied internal and 
external pressures are MPa80  and MPa10  respect-
tively. In addition, ξηµβ ===  and β  ranges from -3 

to 3 . The range 33 ≤≤− β  to be used in the pre-sent 
study covers all the values of coordinate exponent en-
countered in the references cited earlier.  

For different values of β , module of elasticity, tempera-
ture profile, radial displacement, radial stresses, hoop 
stresses and the von Mises’ equivalent stresses along 
the radial direction are plotted for plane strain and plane 
stress conditions in Figures 1–10. 

It is apparent from the curve of Figure 1  that  a  positive 
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Figure 1. Distribution of modulus of elasticity. 

 
 
 

 
 
Figure 2. Distribution of radial temperature. 
 
 
 

 
 
Figure 3. Distribution of radial displacement for plane strain 
condition ( sec/50rad=ω ). 
 
 

β  means increasing stiffness in the radial direction 

whereas a negative value of β  results in a decrease in 

stiffness in the radial direction. Figure 2 shows that as β  
increases, the temperature decreases. Figures 3 and 4 
show that  for  higher  values  of β ,  radial  displacement 

 
  
 
 

 
 
Figure 4. Distribution of radial displacement for plane stress 
condition ( sec/50rad=ω ). 
 
 
 

 
 
Figure 5. Distribution of radial stress for plane strain condition 
( sec/50rad=ω ). 
 
 
 

 
 
Figure 6. Distribution of radial stress for plane stress condition 
( sec/50rad=ω ). 
 
 

decreases. Besides, for similar values of β , the value of 
radial displacement is the highest for the plane stress 
condition and the lowest for the plane strain. Figures 5 - 8 
show the distribution of radial and hoop stresses in the 
radial direction. As β  increases, so does  the  magnitude 



 

 
 
 
 

 
 
Figure 7. Distribution of hoop stress for plane strain condition 
( sec/50rad=ω ). 
 
 
 

 
 
Figure 8. Distribution of hoop stress for plane stress condition 
( sec/50rad=ω ). 
 
 
 
of the radial stress. In the plane strain con-dition, for 

6.0−>β , the hoop stress increases as the radius 

increases whereas for 6.0−<β  the hoop stress along 
the radius decreases. In the plane stress condition, 
for 5.0>β , the hoop stress increases as the radius 

increases whereas for 5.0<β  the hoop stress along the 

radius decreases. The curve associated with 6.0−=β  

and 5.0=β  for plane strain and plane stress conditions 
respectively, shows that the variation of hoop stress 
along the radial direction is minor and is almost uniform 
across the radius.  

For the purpose of studying the pattern of stress distri-
bution along the cylinder radius, in Figures 9 and 10, the 
von Mises’ equivalent stress is plotted in the radial direc-
tion for the conditions of plane strain and plane stress. It 
must be noted that for 2=β , the equivalent stress re-
mains almost uniform along the radius of the cylinder. 
Approximately, for 2>β , the von Mises’ equivalent 
stress   increases  as  the  radius  increases  whereas  for  
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Figure 9. Distribution of equivalent stress for plane strain condition 
( sec/50rad=ω ). 
 
 
 

 
 
Figure 10. Distribution of equivalent stress for plane stress 
condition ( sec/50rad=ω ). 
 
 
 

2<β  it decreases. In almost all the figures, the 
homogeneous condition showed a behavior very similar 
to 0=β . 
 
Example 2: In this example, the assumptions made in 
the previous case hold true, but 5.1−==== ξηµβ , 
and the angular speed varies. In addition, ω  ranges from 
0 srad  to 300 srad .  
For different values ofω , radial displacement, radial 

stresses, hoop stresses and the von Mises’ equivalent 
stresses along the radial direction are plotted for plane 
strain and plane stress conditions in Figures 11 – 18. 
According to Figures 11 and 12, for higher values of ω , 
valent stress increases as the radius increases whereas 
for 2<β  it decreases. In almost all the figures, the 
homogeneous condition showed a behavior very similar 
to 0=β . 

Example 2: In this example,  the  assumptions  made in  
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Figure 11. Distribution of radial displacement for plane strain 
condition ( 5.1−==== ξηµβ ). 
 
 
 

 
 
Figure 12. Distribution of radial displacement for plane stress 
condition ( 5.1−==== ξηµβ ). 
 
 
 

 
 
Figure 13. Distribution of radial stress for plane strain condition 
( 5.1−==== ξηµβ ). 
 
 

the previous case hold true, but 5.1−==== ξηµβ , 
and the angular speed varies. In addition, ω  ranges from 
0 srad  to 300 srad .  
For different values  of  ω ,  radial  displacement,  radial 

 
 
 
 

 
 
Figure 14. Distribution of radial stress for plane stress condition 
( 5.1−==== ξηµβ ). 
 
 
 

 
 
Figure 15. Distribution of hoop stress for plane strain condition 
( 5.1−==== ξηµβ ). 
 
 
 

 
 
Figure 16. Distribution of hoop stress for plane stress condition 
( 5.1−==== ξηµβ ). 
 
 
 
stresses, hoop stresses and the von Mises’ equivalent 
stresses along the radial direction are plotted for plane 
strain and plane stress conditions in Figures 11 – 18. 

According to Figures 11 and 12, for higher values of ω , 
radial displacement increases. Figures 13 – 14  show  the 



 

 
 
 
 

 
 
Figure 17. Distribution of equivalent stress for plane strain 
condition ( 5.1−==== ξηµβ ). 
 
 
 
distribution of radial stresses in the radial direction. The 
radial stress decreases as ω  increases. 

  Figures 15 - 18 show the distribution of hoop stresses 
and equivalent stresses in the radial direction. The hoop 
and equivalent stress increase as ω  increases. Besides, 
in all the Figures (11 - 18), for similar values of ω , the  
values of radial displacement, radial stresses, hoop 
stresses and equivalent stresses are highest for the 
plane stress condition but lowest for the plane strain. For 
a given ω , the same values decrease in radial direction.  
 
 
Conclusion 
 
It is apparent that closed form solutions to  simplified  ver- 
sions of real engineering problems are important. In the 
present work, specifically, plane strain and plane stress, 
closed form solutions for the rotating FGM pressurized 
thick hollow cylinder under thermal load are  derived  and 
will be compared with those for the homogeneous ones. 
It is assumed that the material properties change as 
graded in the radial direction to a power law function. The 
values of µ , η  andξ  are taken as coefficients of the 

values of β . To show the effect of in-homogeneity on the 
stress distributions, different values were considered for 
β  and ω . In the first condition, β  was considered to be 
constant and ω  varying. In the second condition, this 
situation was reversed. The solution of the Navier equa- 
tion yielded the mechanical and thermal stresses. 
Numerical results show that the in-homogeneous a useful 
parameter from a design point of  view  in  that  it  can  be 
tailored to specific applications to control the stress 
distributions. Thus, by selecting a proper value of β , it is 
possible for engineers to design rotating FGM pres-
surized thick hollow cylinder under a thermal load that 
can meet some special requirements. It is also possible 
to find an optimum value for the power law index such 
that the variation of stresses along the  radial  direction  is 
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Figure 18. Distribution of equivalent stress for plane stress 
condition ( 5.1−==== ξηµβ ). 
 
 
 
minimized, yielding optimum use of material. 
 
 

Nomenclature: 1A , 2A , 11A  to 13A , 1A′ , 2A′ , 1B , to 3B , 

1C  to 5C , 1C′  to 4C′ , 1D  to 6D  , 1D′  to 6D′  1m  to 5m , n , 

Constants; a , inner radius of cylinder )(m ; b , outer radius of 

cylinder )(m ; E , modulus of elasticity )(GPa ; HE , modu-

lus of elasticity in homogeneous case )(GPa ; iE , modulus of 

elasticity at the inner surface )(GPa ; ah , heat transfer coeffi-

cients at the inner surface )./( 2 kmW ; bh , heat transfer 

coefficients at the outer surface )./( 2 kmW ; k , thermal con-

ductivity )./( kmW ; Hk , thermal conductivity in homoge-

neous case )./( kmW ; ik , thermal conductivity at the inner 

surface )./( kmW ; iP , internal pressure )(MPa ; oP , exter-

nal pressure )(MPa ; r , radius )(m ; r , normalized radius; 

T , radial temperature )(0C ; HT , radial temperature in 

homogeneous case )(0C ; aT , inner temperatures of the 

surrounding media; bT , outer temperatures of the surrounding 

media; ru , radial displacement )(m ; H
ru , radial displacement 

in homogeneous case )(m ; α , thermal conductivity )(/ Co ; 
Hα , thermal conductivity in homogeneous case )(/ Co ; iα , 

thermal conductivity at the inner surface )(/ Co ; β , inhomo-

geneity constant; η , inhomogeneity constant; θ , hoop 

+direction; µ , inhomogeneity constant; υ , Poisson’s ratio; ξ , 

inhomogeneity constant; ρ , density )/( 3mkg ; Hρ , density 

in homogeneous case )/( 3mkg ; iρ , density at the inner 

surface )/( 3mkg ;  rrσ ,  radial  stress  component )(MPa ; 
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θθσ , hoop stress component )(MPa . 
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