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In this study, the differential transform method (DTM) was applied to steady flow over a rotating disk in 
porous medium with heat transfer. The governing equations can be written as a system of nonlinear 
ordinary differential equations. The approximate solutions of these equations were obtained in the form 
of series with easily computable terms. Then, Padé approximant was applied to increase the 
convergence radius of the series. The results obtained in this study were compared with the numerical 
results (fourth-order Runge-Kutta method). 
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INTRODUCTION  
 
Nonlinear differential equations are usually arising from 
mathematical modeling of many physical systems. Some 
of them are solved using numerical methods and some 
are solved using the analytic methods such as 
perturbation (Nayfeh, 1979; Rand et al., 1987). The 
numerical methods such as Runge - Kutta method are 
based on discretization techniques, and they only permit 
us to calculate the numerical solutions for some values of 
time and space variables, which cause us to overlook 
some important phenomena, in addition to the intensive 
computer time required to solve the problem. Thus it is 
often costly and time-consuming to get a complete curve 
of results and so in these methods, stability and con-
vergence should be considered so as to avoid divergence 
or inappropriate results. Numerical difficulties additionally 
appear if a nonlinear problem contains singularities or 
has multiple solutions. Perturbation techniques are based 
on the existence of small/large parameters, the so-called 
perturbation quantity. Unfortunately, many nonlinear 
problems in science and engineering do not contain such 
kind of perturbation quantities at all. Some non-
perturbative techniques, such as the artificial small para-
meter method (Lyapunov, 1892),  the  δ −expansion  method  
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(Karmishin, 1990) and the Adomian's (1994) 
decomposition method have been developed. Different 
from perturbation techniques, these non-perturbative 
methods are independent upon small parameters. 
However, both of the perturbation techniques and the 
non-perturbative methods themselves cannot provide us 
with a simple way to adjust and control the convergence 
region and rate of given approximate series. 

One of the semi-exact methods which do not need 
small parameters is the DTM. This method first proposed 
by Zhou (1986), who solved linear and nonlinear 
problems in electrical circuit problems. Chen et al. (1999) 
developed this method for partial differential equations 
and Ayaz (2004) applied it to the system of differential 
equations, this method is very powerful, Abdel-Halim 
Hassan (2008). This method constructs an analytical 
solution in the form of a polynomial. It is different from the 
traditional higher order Taylor series method. The Taylor 
series method is computationally expensive for large 
orders. The differential transform method is an alternative 
procedure for obtaining analytic Taylor series solution of 
the differential equations. In recent years, the differential 
transform method has been successfully employed to 
solve many types of nonlinear problems (Ravi Kanth et 
al., 2008; Arikoglu et al., 2006; Arikoglu et al., 2005; 
Bildik et al., 2006; Ayaz, 2004; Rashidi, 2009 a,b,c; 
Rashidi et al.,  2009  a,b). The  fluid  flow  due  to  an  infinite 
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rotating disk was first considered by von Karman (1921). 
He introduced the similarity transformations which 
reduced the governing partial differential equations to 
ordinary differential equations. Cochran (1934) obtained 
asymptotic solutions for the steady problem formulated 
by von Karman and Benton (1966) solved the unsteady 
state of this problem. Millsaps et al. (1952) considered 
heat transfer from a rotating disk maintained at a 
constant temperature for different values of Prandtl 
numbers in the steady state. Attia (1998; 2002) and Attia 
et al. (2001) studied the influence of an external uniform 
magnetic field on the flow due to a rotating disk. The 
effect of uniform suction or injection through a rotating 
porous disk on the steady hydrodynamic or 
hydromagnetic flow induced by the disk was investigated 
(Stuart, 1954; Kuiken, 1971; Ockendon, 1972). The main 
goal of the present study is to find the totally analytic 
solution for steady flow over a rotating disk in porous 
medium with heat transfer by differential transform 
method. This problem studied first by Attia (2009) and 
exerted the similarity solution. We will extend the DTM- 
Padé for it. In this way, the Letter has been organized as 
follows. In Section 2, the flow analysis and mathematical 
formulation are presented. In Section 3, we extend the 
application of the DTM to construct the approximate 
solutions for the governing equations. The Padé 
approximant is analyzed in Section 4. Section 5 contains 
the results and discussion. The conclusions are 
summarized in Section 6. 
 
 
MATHEMATICAL FORMULATION  
 

Set the disk in the plane z = 0 and the space z > 0 is equipped 
by a viscous incompressible fluid. An insulated infinite disk rotates 
about an axis perpendicular to its plane with constant angular 

speed ω through a porous medium where the Darcy model is 
assumed (Khaled et al., 2003). Otherwise the rest fluid is under 
pressure P∞. The equations of steady motion are given by: 
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Where ,u v  and w  are velocity components in the directions of 

,r ϕ  and z  respectively. P  is the pressure, µ  is the coefficient of 
viscosity, ρ  is the density of the fluid and K  is the Darcy 
permeability. Attia (2009)  introduced  von  Karman  transformations 
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Where η a non-dimensional boundary layer thickness is measured 

along the axis of rotation, , ,F G H  and P  are non-dimensional 

functions of η  and υ  is the kinematic viscosity of the fluid, 

υ µ ρ=  (Attia, 2009). Upon substitution of Equation (5) into the 
Navier - Stokes equations, a set of similarity non-linear ordinary 
differential equations are obtained thus: 
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M Kυ ω=  is the porosity parameter. The boundary conditions are 
as follows:   
 

(0 ) 0 , (0 ) 1, ( 0 ) 0 ,f g h= = =                             (10a) 
( ) 0, ( ) 0, ( ) 0,f g P∞ = ∞ = ∞ =                       (10b) 

 
Equation (10a) indicates the no-slip condition of viscous flow on the 
disk. Far from the surface of the disk, all fluid velocities must vanish 
aside the induced axial component as indicated in Equation (10b). 
Equation (9) can be used to compute the pressure distribution. The 
energy equation without the dissipation terms is as follows   
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Where T  is the temperature of the fluid. pc
 is the specific heat at 

constant pressure of the fluid, and k  is the thermal conductivity of 

the fluid. The non-dimensional variable θ  introduced as follows: 
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Where wT
 and 

T∞  are the temperature of the surface of the disk 
and the temperature at large distances from the disk, respectively. 
The energy equation is reduced by using Equations (5) and (12) 
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Where Pr  is the  Prandtl  number, 
Pr .p kc kµ=

  the  boundary  



 
 
 
 
conditions are  
 

(0) 1, ( ) 0,θ θ= ∞ =                                                  (14) 
 
 
THE DIFFERENTIAL TRANSFORM METHOD 
 

Differential transformation of the function ( )ηf  is defined as follows: 
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In Equation (15) ( )f η  is the original function and ( )F k  is 
transformed function which is called the T-function (it is also called 

the spectrum of the ( )f η  at 0η η= ). The differential inverse 

transformation of ( )F k  is defined as 
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Combining equations (15) and (16), one can obtain 
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Equation (17) implies that the concept of the differential 
transformation is derived from Taylor’s series expansion, but the 
method does not evaluate the derivatives symbolically. However, 
relative derivatives are calculated by iterative procedures that are 
described by the transformed equations of the original functions. 
From the definitions of Equations (15) and (16), it is easily proven 
that the transformed functions comply with the basic mathematical 

operations shown. In real applications, the function ( )f η  in 
Equation (16) is expressed by a finite series and can be written as 
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Equation (18) implies that 01
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k N
F k η η∞

= +
−�

 is negligibly 

small, where N  is series size. 
 
Theorems to be used in the transformation procedure, which can be 
evaluated from Equations. (15) and (16) are given. 
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Theorem 3 
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Taking differential transform of Equations (6) (8) and (13), this can 
be obtained: 
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Where ( ), ( ), ( )H k F k G k  and ( )kΘ  are the differential transforms of 
( ), ( ), ( )h f gη η η  and ( ).θ η  The transformed boundary conditions are 
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that ,α β  and γ  are constants. These constants are computed from 
the boundary conditions. For 0.5M =  and 20=N , the solutions of 
Equations (23) (using the DTM) are as follows: 
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PADÉ APPROXIMATION 
 
Some techniques exist to increase the convergence radius of a 
given series. Among them, the so-called Padé technique is widely 
applied. Suppose that a function ( )f η  is represented by a power 
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reserved for the given set of coefficients and ( )f η  is the associated 

function. Padé approximant [ , ]L M  is a rational fraction 
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This has a Maclaurin expansion which agrees with Equation (28) as 
far as possible. Notice that in Equation (29) there are 1L +  
numerator coefficients and 1M +  denominator  coefficients  (Baker,  
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M  independent denominator coefficients, making 1L M+ +  
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Baker (1981) found that 
 

0 1 0 1 0 1( ) ( ) ( ) .M L L M
M Lb b b c c a a a Oη η η η η η+ + + + + = + + + +� � �

1
0 1 0 1 0 1( ) ( ) ( ) .M L L M

M Lb b b c c a a a Oη η η η η η + ++ + + + + = + + + +� � �            (31) 
 

Equating the coefficients of 
1 2, , ,L L L Mη η η+ + +�  

 
1 1 2 0 1

2 1 3 0 2

1 1 0

0,

0 ,

0 .

M L M M L M L

M L M M L M L

M L M L L M

b c b c b c

b c b c b c

b c b c b c

− + − − + +

− + − − + +

− + +

+ + + =
+ + + =

+ + + =

�

�

�

�              (32) 
  

If 0j < , we define 0jc =  for consistency. Since 0 1,b =  Equation 

(32) become a set of M  linear equations for the M  unknown 
denominator coefficients 
 

11 2 3

1 22 3 4 1

2 33 4 5 2

1 2 1 1

,

M LL M L M L M L

M LL M L M L M L

M LL M L M L M L

L L L L M L M

b cc c c c
b cc c c c
b cc c c c

c c c c b c

+− + − + − +

− +− + − + − + +

− +− + − + − + +

+ + + − +

� � � �� �
� � � �� �
� � � �� �
� � � �� � = −
� � � �� �
� � � �� �

� �� � � �
� �� � � �

�

�

�

� � � � � �

�
  (33) 

 

From these equations, ib  may be found. The numerator 
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Thus Equations (33) and (34) normally determine the Padé 
numerator and denominator and are called the Padé equations. 
The Padé approximant [ , ]L M  is constructed which agrees with 

0
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through order .L Mη +
 for more details the reader is 

referred to (Baker, 1981). The [11, 11] Padé approximants of 
Equation (24) - (27) are as follows: 
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Figure 1. The profile of ( )h η obtained by the DTM for different 
value of N  in comparison with the numerical solution, when 

0.5.M =  
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Figure 2. The profile of ( )f η obtained by the DTM for 
different value of N  in comparison with the numerical 
solution, when 0.5.M =  
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RESULTS AND DISCUSSION 
 
In this paper, the DTM was applied successfully to find 
analytical solution of steady flow over a rotating disk in 
porous medium with heat transfer. Graphical 
representation of results is very useful to demonstrate the 
efficiency and accuracy of the differential transform 
method for the problem stated in this work. Figures 1 – 4 

show the velocity components ( ), ( ), ( )h gη η ηƒ  and the 

dimensionless temperature distribution ( )θ η  obtained by 
the DTM for different value of series size. Figures 5 - 8 

show ( ), ( ), ( )h gη η ηƒ  and ( )θ η  obtained by the 
DTM and the DTM-Padé in comparison with the 
numerical solutions obtained by the fourth-order Runge–
Kutta method. In Figure 5 - 8, one can see a very good 
agreement between the DTM and the numerical results, 
but these series diverge around infinity. One Padé appro-
ximant solve this problem and increase the convergence 
of given series. So, the solutions are obtained by DTM-
Padé are more accurate than the DTM. In Figures 9 -12, 
the velocity components and the dimensionless 
temperature distribution are represented for different 

values of .M   
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Figure 3. The profile of ( )g η  obtained by the DTM for 
different value of N  in comparison with the numerical 
solution, when 0.5.M =  
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Figure 4. The profile of ( )θ η  obtained by the DTM for 
different value of N  in comparison with the numerical 
solution, when 0.5M =  and Pr 0.7.=  
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Figure 5. The profile of ( )h η obtained by the DTM ( 20)N =  and 
the DTM-Padé in comparison with the numerical solution. 
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Figure 6. The profile of ( )f η obtained by the DTM ( 20)N =  and 
the DTM-Padé in comparison with the numerical solution. 
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Figure 7. The profile of ( )g η  obtained by the DTM ( 20)N =  
and the DTM-Padé in comparison with the numerical 
solution. 
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Figure 8. The profile of ( )θ η  obtained by the DTM ( 20)N =  and 
the DTM-Padé in comparison with the numerical solution. 
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Figure 9. The profile of ( )h η  obtained by the DTM-Padé 
(Padé approximant [9, 9]) in comparison with the numerical 
solution for different values of the porosity parameter .M  
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Figure 10. The profile of ( )f η  obtained by the DTM-Padé 
(Padé approximant [9, 9]) in comparison with the numerical 
solution for different values of the porosity parameter .M  
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Figure 11. The profile of ( )g η  obtained by the DTM-Padé 
(Padé approximant [9,9]) in comparison with the numerical 
solution for different values of the porosity parameter .M  
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 Figure 12. The profile of ( )θ η  obtained by the DTM-Padé 
(Padé approximant [9, 9]) in comparison with the numerical 
solution for different values of the porosity parameter 

,M when Pr 0.7.=  
 
 
Conclusion 
 
In this paper, the DTM was applied successfully to find 
the analytical solution of steady flow over a rotating disk 
in porous medium with heat transfer. The results show 
that the differential transform method does not require 
small parameters in the equations, so the limitations of 
the traditional perturbation methods can be eliminated. 
The reliability of the method and reduction in the size of 
computational domain give this method a wider 
applicability. Therefore, this method can be applied to 
many nonlinear integral and differential equations without 
linearization, discretization or perturbation. 
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