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An extension of a brick wall model was used to describe corrosion of aluminum alloys. The extended 
model simulates the behavior of corrosion paths at intersections of grain boundaries within the metal 
sample. Situations considered include the cases where a corrosion path might assume an upward 
turn, skip an intersection (not turn) or split into branches. The splitting of a corrosion path results in a 
smaller median of the minimum order statistic while the other factors increase the median of the 
minimum order statistic. Moreover, a larger number of grain layers increases the minimum path 
length for a sample with given thickness. With a proper combination of these factors, the extended 
model is able to provide a good fit to the experimental data developed by the foil penetration 
technique. 
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INTRODUCTION 
 
High strength aluminum alloys such as AA2024-T3 are 
widely used in aerospace applications. They are resistant 
to uniform corrosion but highly susceptible to localized 
corrosion. Localized corrosion, usually in the forms of 
intergranular corrosion, pitting corrosion, crevice corro-
sion, exfoliation and stress corrosion cracking (Davis, 
1999), is unpredictable in terms of the exact places of 
initiation and initiation time. With traditional deterministic 
approaches, such as the electrochemical theory of 
corrosion, localized corrosion cannot be well explained 
due to the scattering of the corrosion data. On the other 
hand, considering localized corrosion as rare events, 
statistical approaches could provide an appropriate way 
to describe the mechanism of corrosion (Shibata, 1996), 
potentially to evaluate quantitatively localized corrosion 
behavior. Among all the forms of localized corrosion in 
high strength aluminum alloys in aqueous environment, 
IGC and pitting attack are two common forms that have 
received a good deal of attention. IGC is a preferential 
attack of grain boundaries or nearby adjacent regions 
without   appreciable   attack  of   the  grain  matrix,  while 
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pitting corrosion occurs at the intermetallic particles or in 
the grain matrix. Both forms of attack are similar from an 
electrochemical point of view (Galvele et al., 1970; Muller 
et al., 1977). However, IGC might have very different 
growth kinetics from pitting. For predictive modeling of 
corrosion propagation, it is important to understand these 
growth kinetics independently. In this paper, we describe 
a model predicting the growth kinetics of IGC in 
aluminum alloy. 

There are many factors that determine the resistance 
and susceptibility of an alloy to IGC, such as alloy 
composition, microstructure and the environment (Davis, 
1999; Scully et al., 1992; Scully, 1999). The exact role of 
each of these factors is still unclear. For example, even 
though there are a few reports on quantitative measure-
ments of IGC in aluminum alloys, little is known about the 
relationship between alloy microstructure and IGC growth 
kinetics. Zhang and Frankel (2000) made quantitative 
measurements of localized corrosion kinetics in AA2024-
T3 using the foil penetration technique. They reported 
that the growth kinetics of localized corrosion in this type 
of alloy exhibit a strong anisotropy as a result of 
anisotropy in the microstructure of the wrought aluminum 
alloy. AA2024-T3 has a typical laminated structure with 
grains    elongated  in   the  longitudinal (rolling) and  long  
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transverse directions relative to their dimension in the 
short transverse (through-thickness) direction. The time 
for intergranular corrosion to penetrate a given distance 
along the longitudinal or long transverse direction is much 
less than the time to penetrate the same nominal 
distance in the short transverse direction (Zhang and 
Frankel, 2000). The ratio of nominal penetration rates for 
the longitudinal direction to that for the short transverse 
direction was found by Zhang (Zhang and Frankel, 2000) 
to be 4.29. The local intergranular growth rate should not 
depend on the direction of growth, though it is likely a 
function of total path length from the surface exposed to 
the bulk solution. The difference in nominal growth rate 
with through-thickness direction relative to the rolling 
direction is a result of the anisotropic grain dimensions 
and the resulting difference in path length. Any intergra-
nular path in the through thickness direction of a plate 
with an elongated microstructure will be very convoluted, 
resulting in nominal rate of penetration that is much less 
than the local rate of intergranular growth. It is of interest 
to be able to determine the influence of a grain structure 
with a particular size and shape anisotropy on the 
kinetics of intergranular growth in the through thickness 
direction. Ruan et al. (2004) proposed a statistical model 
to describe the relationship between the microstructure 
and the IGC growth rate based on foil penetration data 
and quantification of the microstructure of AA2024-T3. In 
the model, a brick wall represents the laminated micro-
structure of AA2024-T3. The distributions of the grain 
size (both width and length) are approximated by gamma 
distributions. Since the grain size in the longitudinal or 
rolling direction is much larger than that in the long 
transverse direction, the problem can be simplified into 
two dimensions, the short and long transverse 
dimensions. IGC in the longitudinal direction is assumed 
not to contribute to penetration in the short transverse 
direction. Given the length and the width of the grain, the 
distance that a corrosion path travels along a given grain 
is assumed to be uniformly distributed. Then, a Matlab 
program was used to simulate the distribution of the 
minimum order statistic of the corrosion path length. The 
simulation gives estimates with a small amount of 
underestimation compared to the actual result from 
Zhang’s experiments (Zhang, 2001). 

The brick wall model relates the growth kinetics of 
AA2024-T3 aluminum alloy to the microstructure of the 
alloy. It provides a simple way to quantitatively evaluate 
the growth kinetics of IGC for a given microstructure in 
AA2024-T3. However, the brick wall model was based on 
a series of simplified assumptions, which do not provide a 
totally accurate description of the corrosion propagation 
process. In particular, there are two cases that were not 
accounted for in the model. First, corrosion was assumed 
to turn toward the bottom surface (away from the 
environment) at every intersection with a vertical grain 
boundary. However, a corrosion path might actually skip 
an intersection and not turn. Moreover, when a corrosion 
path does make a turn, it  might  turn  up  toward  the  top 

 
 
 
 
surface (toward the environment) or down toward the 
bottom surface of the metal strip depending on the nature 
of the three-way intersection. When a corrosion path 
turns upward and reaches the top surface, the pro-
pagation can be assumed to end up. Second, a corrosion 
path was assumed not to split at any intersection while it 
might actually split into two corrosion paths at an 
intersection. Each of these two corrosion paths might 
propagate independently in the metal. Accordingly, the 
number of corrosion paths increases. Based on the 
above considerations of corrosion behavior, a more 
realistic brick wall model is discussed in this paper. 
 
 
MODELING CORROSION GROWTH AT AN 
INTERSECTION 
 
Basic assumptions 
 
Consider a strip of metal with thickness T and a total of k 
grain layers across the thickness. The widths bj of the 
grains are taken to be common within a given layer but 
they are permitted to vary across different layers. That is, 
 

                                                    2.1                                                                                         
 
Let denote grain length and assume that it has a 
distribution with pdf f(a) (probability density function). As 
stated in the previous paper (Ruan et al., 2004), both the 
grain length and width are reasonably modeled by 
gamma distributions with appropriate parameter values � 
and �. suppose there are m corrosion initialization points 
on the surface of the metal. For i = 1;… m, let Wi;D 
denote the distance that the ith initial corrosion path 
travels to reach a fixed depth, say D, of the metal. If the 
corrosion path reaches the bottom surface, Wi;D 
corresponds to Wi;T. Assume these m corrosion paths 
are independent. Figure 1 is a graphical representation of 
a brick wall model that represents an aluminum sample 
with a simplified layered microstructure. The corrosion 
path initiated from the top surface travels along a grain 
boundary that is perpendicular to the surface. It propa-
gates along the grain boundary until it meets an 
intersection. Then, it might turn to a horizontal direction 
(either left or right on the figure), or it might split into two 
horizontal corrosion paths. In the former case, it pro-
pagates along the length direction of the grains until it 
meets another intersection. Depending on the nature of 
this new three-way intersection, it might turn upward, or 
downward or might skip the intersection and continue 
propagation along the horizontal direction. Since the 
widths of the grains are small compared to the lengths of 
the grains, it is reasonable to assume that a corrosion   
path will always make a turn toward a horizontal direction 
at  the  end  of  a  vertical  step.  If  a corrosion path turns 
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Figure 1. A graphical representation of the growth behavior of a corrosion path at a three-way intersection in 
a strip of metal with k = 5 grain layers. The bold line represents Wi;D and a and b are random variables 
representing the length and width, respectively, of a grain model. (Note: ST-short-transverse direction; LT—
long-transverse direction; L-longitudinal direction). 

 
 
 
upward and reaches the top surface again, it is 
considered to be a terminated path since IGC corrosion 
does not propagate on the surface of the alloy. 
Additionally, it is assumed that a corrosion path cannot 
terminate anywhere except the top or bottom surface of 
the metal strip. In the case where a corrosion path splits 
into two horizontal pieces at an intersection, these pieces 
are viewed as two corrosion paths having initiated from 
the same place on the top surface with a common 
previous path length. These paths are then assumed to 
propagate independently in the remainder of the metal 
sample under the previously described assumptions. 
However, in the case of such a split, the total number of 
corrosion paths increases. 

The foil penetration technique measures the time taken 
by the fastest corrosion growth path to reach the bottom 
surface. With the vital assumption that the local corrosion 
growth rate is identical in all directions, the fastest 
corrosion growth corresponds to the shortest corrosion 
path length (Zhang, 2001; Zhang et al., 2003). Corres-
pondingly, any path that terminates before reaching the 
bottom surface should not be considered the shortest 
corrosion growth path (minimum order statistic) for our 
purposes. When  a  horizontal  corrosion  path  meets  an 

intersection, it can either continue to propagate in the 
horizontal direction or turn toward a vertical direction that 
is perpendicular to the surface. There are two types of 
intersections, represented by ‘�’ and ‘�’ For the “�” type 
intersection, the horizontal corrosion path can turn 
downward toward the bottom surface. For the “‘�” type 
intersection, the horizontal corrosion path can turn 
upward toward the top surface. Therefore, the probability 
that a horizontal corrosion path turns upward depends on 
the proportion of the “�” type intersections among all the 
intersections it meets. Similarly, the probability that a 
corrosion path turns downward depends on the propor-
tion of “�” type intersections among all the intersections it 
meets. Let p� and p� denote these two proportions, 
respectively. Then,  
 

                                                             2.2           
 
Let    pskip   represent   the   probability that   a   horizontal                                                                
corrosion path skips an intersection and let pup and pdown 
be the probabilities that it turns upward and downward, 
respectively. Then, according to our previous 
assumptions, we have: 
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                                     2.3                                                           
 
If a horizontal corrosion path is known to make a turn at 
an intersection, the two conditional probabilities pup/(1 − 
pskip) and pdown/(1 − pskip) describe the likelihood that a 
corrosion path would turn upward and downward, 
respectively, corresponding to the proportions of the “�” 
and “�” types of intersections, respectively. That is,  
 

                                         2.4                                                  
 
Further, let psplit denote the probability that a corrosion 
path splits into two branches at an intersection at the end 
of a vertical step. We assume all of these probabilities 
are identical for each intersection. 

We consider a total of m initial corrosion sites on the 
top surface of a metal strip. Propagation with possible 
splitting results in (m + u) path lengths, where u � 0 is the 
total number of branches resulting from splitting of 
corrosion paths. Among these lengths, we let v � 0 be the 
number of paths terminated on the top surface instead of 
the bottom surface. Therefore, the (m + u − v) paths lead 
to a random number of corrosion path lengths and the 
minimum of these lengths is recorded as a random 
observation Wmin; T from the distribution of the minimum 
path length for a metal strip of thickness T. The minimum 
order statistic for the corrosion path lengths is thus given 
by 
 

       2.5                                            
 
Where Wi;T is the length of the ith corrosion path. 
 
Let Wi;D; horizontal and Wi;D ;vertical represent the total 
horizontal distance and the total vertical distance, 
respectively, traveled by the ith corrosion path, so that 
 

 
                                                                                2.6 
 
Let Ti (j) be the vertical distance that the ith corrosion 
path travels along the width of the jth grain before it turns 
toward a horizontal direction. That is, 
 

         2.7 
 
Where j �{1; 2;… k}, and k is the total number of grain 
layers across the thickness. Since corrosion paths might 
turn upward and travel on previous layers again, the total 
vertical distance for a given corrosion path might not 
exactly   equal   the  thickness T.  Each  Ti(j) is,  however,  

 
 
 
 
equal to the width of the jth layer. Since the width of the 
grain in each layer is modeled by a gamma distribution, 
all the Ti(j)s have a common gamma distribution. Let Di(j) 
represent the horizontal distance that the ith corrosion 
path travels on the bottom surface of the jth layer of the 
metal, for j � {1; : : : ; k − 1}, where k is the total number 
of grain layers across the thickness. Note that no 
corrosion paths propagate on either the top surface of the 
first layer or on the bottom surface of the kth layer. Then, 
 

     2.8 
 
When a corrosion path skips an intersection and keeps 
propagating in the horizontal direction, the associated 
Di(j) would include at least two horizontal pieces. In Fig. 
2, we show such a situation where a corrosion path skips 
three successive intersections on the bottom surface of 
the first layer leading to four horizontal pieces that add up 
to Di(1). The corrosion path turns downward at the fourth 
intersection. (Note that other grains randomly on either 
the top or bottom surface might intercept a grain.) Given 
the length of the grain, the first piece of Di(1) is modeled 
by a uniform distribution and is denoted by Hi(1). The 
unconditional distribution of this random variable was 
discussed in detail in Ruan et al. (2004). BrieGy, the pdf 
(Probability density function), h(d), of Hi(1) is given by the 
following: 
 

                

             2.9 
 
Where � > 0 and � > 0 are the parameters of the gamma 
distribution used to model the distribution of grain lengths 
in the metal. 

Once a corrosion path skips an intersection, however, 
the remaining horizontal pieces on the grain layer are 
modeled solely by the gamma distribution without use of 
a conditional uniform distribution (Figure 2). We denote 
these pieces by [Gi(1)]s; s = 1;… m + u - v,  where n is 
the total number of such complete horizontal pieces. We 
note that this is actually an upper bound approximation 
since the last piece of the horizontal distance might not 
cover an entire grain length before the path turns again. 
However, during propagation, we believe that a horizontal 
corrosion path is likely to meet many more “�” type 
intersections than “�” type intersections. Therefore, the 
probability that a corrosion path turns downward is likely 
to be greater than the probability that it turns upward. As 
a result, the upper bound approximation from using these  
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Figure 2. The bold line represents a corrosion path Wi;D. Di(1) is the 
horizontal distance that the ith corrosion path travels in the second grain layer. 

 
 
 
complete horizontal gamma distances when a corrosion 
path skips an intersection should not result in serious 
overesti-mation. With this notation, we have 
 

                            2.10 
 
 
COMPUTER SIMULATION 
 
Under the discussed assumptions, we used a Matlab algorithm to 
simulate the distribution of the minimum path length. First, the 
thickness of each layer, bj; j =1;… k, is generated from a gamma 
distribution. The parameters of the gamma distribution are 
estimated via the method of moments (Ruan et al., 2004). The sum 
of this set of random numbers is subject to the constraint 
 

 
 
We must adjust the width of the last grain layer to accommodate 
For a corrosion path, the first step is always taken to be a vertical 
step Ti(1), which is equal to b1. Next, the first Hi(1) from the 
distribution with pdf (2.9) is generated. Then, probabilities pup, 
pdown, pskip and psplit are assigned. As an example, consider 
pdown = 0:8 and pskip = 0:1 so that pup = 1 − pdown − pskip = 0:1 
by (2.3). A random number w is generated from the uniform (0; 1) 
distribution. If w < 0:1, the corrosion assumes an upward turn. 
Accordingly, a vertical step is generated with the distance b1, the 
thickness of the first grain layer. If w > 0:9, the corrosion skips the 
intersection and a random number Gi(1) is generated. If w falls 
between 0.1 and 0.9, the corrosion path assumes a downward turn 
and the vertical step takes the value of b2, the thickness of the 
second grain layer.  

An indicator variable, X, is used to record the layer number that 
the corrosion path is currently on. The initial value of X is zero. 
When the corrosion path makes a downward turn, X is increased by 
1. When the corrosion path makes an upward turn, X is reduced by 
1. Otherwise, X retains its current value. X = 0 (except initially) 
corresponds   to   a  corrosion  path  that  is  terminated  at  the  top 

surface. Similarly, X = k if a corrosion path reaches the bottom 
surface. The minimum path length is obtained from those corrosion 
paths that reach the bottom surface. Starting from the first vertical 
step, it is necessary to consider whether a corrosion path might split 
into two branches. For example, assume psplit = 0.2. A random 
number r is generated from the uniform (0; 1) distribution. If r > 0.2, 
the corrosion path is split into two horizontal pieces. Each of the 
branches is then simulated separately from this point on. The total 
number of branches and the number of the current layer where the 
splitting occurs are recorded. For branch 1, the horizontal and 
vertical distances it travels are simulated accordingly given the 
known probabilities pup, pdown, pskip and psplit. If there is another 
split somewhere along the path, the layer number and the number 
of total splits are again recorded. After branch 1 reaches the bottom 
surface or terminates at the top surface, the program starts to 
simulate branch 2. This branch has a portion overlapping with the 
first one, so the new simulation starts from the layer where the split 
occurs until the second branch is also terminated. This entire 
procedure is repeated until all of the branches have been 
simulated. The entire set of corrosion paths constitutes a random 
sample from the distribution of Wi;D; i = 1; …, m + u. Using the 
indicator variable X which records the current layer of the corrosion 
path, a random sample is generated from the distribution of Wi;T; i 
= 1; …, m + u − v; that is, from the distribution of corrosion path 
lengths that reach the bottom surface. The number of corrosion 
initialization sites, m, is estimated to be in the order of 103 for this 
type of aluminum foil penetration samples (Ruan et al., 2004). 
However, m is assumed to be 100 in this paper in order to reduce 
the amount of computation and still illustrate the application of the 
simulation procedure. The minimum of these lengths is recorded as 
a random observation Wmin;T from the distribution of the minimum 
path length. A sufficient number (e.g., sample size = 100) of 
minimum path length values are generated by repeating the above 
procedure. The algorithm of the computer program is summarized 
in Figure 3. 
 
 
SIMULATION RESULTS AND DISCUSSION 
 
We use the method of moments (Shibata, 1996) to 
estimate the parameters of the gamma distributions in 
order  to  simulate  the  grain  sizes.  From  previous work  
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Table 1. Comparism of the result for gamma (2, 0.0255) and gamma (3, 0.017). 
 

 
 

Median of minimum path length (Pdown=1, 
Pup = 0, Pskip = 0, psplit = 0 (mm) 

Median of minimum path length (pdown=0.94, 
Pup = 0.05, Pskip = 0.01, Psplit = 0.03 (mm) 

gamma (2, 0.0255) 1.296 1.325 
gamma (3, 0.017) 1.294 1.385 

 

The number of sum is m=100 and the number of layer is k = 12. A random sample of size 100 was taken from the distribution of  the minimum 
path length for each model. 

 
 
 
(Ruan et al., 2004), the method of moments estimators 
for the parameters a and � for grain length of the 
AA2024-T3 sample tested by Zhang (2001) are 4 and 
0.075, respectively. In addition, from Zhang (2003), the 
sample mean and standard deviation of the grain 
thickness measurements are 0.05 and 0:032 mm, 
respectively. Assuming that the thickness of the grains is 
distributed as a gamma (a1, �1) distribution, it follows from 
the method of moments that solving 
 

                                                3.1 
 
 
Simultaneously yields 
 

   
 

However, since   a1 must be   an integer for the gamma 
distribution in our model, we could use either gamma (2; 
0:0255) or gamma (3; 0:017) to simulate the distribution 
of grain thickness. In the case that a corrosion path can 
only assume a downward turn, these two sets of 
parameters give close results in terms of the median from 
the distribution of the minimum path length, as shown in 
Table 1. In the case when pup = 0:05, pskip = 0:01 and 
psplit = 0:03, however, the agreement between these two 
sets of parameters is not as good as the previous case, 
since the median for gamma (2; 0:0255) is 1.325 while 
the median for gamma (3; 0:017) is 1.385. This small 
deference is most likely due to the randomness of the 
simulation rather than the deference in the parameters, 
that is, the number of times that a corrosion path skips an 
intersection or splits into two pieces is deferent from path 
to path.  

Hence, either gamma (2; 0:0255) or gamma (3; 0:017) 
can be used to model the distribution of the grain width. 
For the rest of our study, we use only gamma (2; 0:0255) 
to simulate the distribution of the grain thickness. Using 
the algorithm described above, the influences of turning 
upward, skipping an intersection and splitting into two 
branches on the minimum corrosion path lengths are 
investigated separately and the results are summarized 
in Tables 2 - 4, respectively. The thickness of the  grain is 

simulated by a gamma (2; 0:0255) distribution. The 
number of corrosion initialization sites is m = 100, the 
number of layers is k = 12 and the sample thickness T is 
assumed to be 0:4 mm. A random sample of size 100 is 
taken from the distribution of the minimum path length 
and the median of these observations M is computed, 
along with the normalized ratio, given by the expression: 
 
Normalized ratio = M/N                                              3.2 
 
This ratio is expected to be close to 4.29 for the sample 
of AA2024-T3 tested by Zhang (2001). Table 2 
summarizes the simulation results for the setting where a 
corrosion path can turn up or down but not skip or split at 
an intersection (pskip = 0; psplit = 0). The probability of 
turning upward, pup, varies from 0 to 0.5 in steps of 0.05. 
As pup increases, the median of the minimum path length 
tends to increase. For pup between 0 and 0.5, the 
median M increase is roughly linear in the range of 0.1- 
0.3 but the increase is more dramatic for pup > 0:3 
(Figure 4). When pup = 0, some undere-stimation exists 
in the estimated median minimum path length because 
the normalized ratio is smaller than the target 4.29. When 
pup is large, the model overestimates this nominal 
median minimum path length as the normalized ratio 
increases dramatically. The increase in simulated median 
minimum path length can be attributed to two factors. 
When a corrosion path assumes an upward turn, it 
propagates along a more tortuous route than those paths 
that do not turn upward. On the other hand, some 
corrosion paths that turn upward might terminate at the 
top surface of the metal strip, thus decreasing the total 
number of paths reaching the bottom surface. In this 
case, the minimum order statistic is likely increased. 
However, the influence of m on minimum order statistic is 
small (Zhang et al., 2003). 

Table 3 summarizes the simulation results for the 
setting where a corrosion path can assume a downward 
turn at an intersection or skip the intersection but it 
cannot turn upward or split (pup = 0; psplit =0). The 
probability of skipping an intersection, pskip, varies from 
0.05 to 0.5 in steps of 0.05. As pskip increases, the 
median of the minimum path length tends to increase. 
We note that when the two probabilities pup and pskip 
are small, they have similar on both the median of the 
minimum path length and the normalized ratio. They 
demonstrate  similar  amounts  of  random  variation  with 
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Figure 3. A flow chart representing the computer simulation algorithm of Ogala, E and 
Aideyan D.O. 

 
 
 

Table 2. Simulation result minimum corrosion path length when a corrosion path turn upward or downward but not skip an 
intersection or split into branches (Pskip = 0, Psplit = 0). 
 

Sample Pdown Pup Median of minimum path length (mm) Normalized ratio 
1 1.00 0.00 1.296 3.24 
2 0.95 0.05 1.358 3.39 
3 0.90 0.10 1.438 3.59 
4 0.85 0.15 1.485 3.71 
5 0.80 0.20 1.580 3.95 
6 0.75 0.25 1.701 4.25 
7 0.70 0.30 1.828 4.57 
8 0.65 0.35 2.123 5.31 
9 0.60 0.40 2.275 5.69 

10 0.55 0.45 2.787 6.97 
11 0.50 0.50 3.686 9.22 



8       J. Eng. Comput. Innov. 
 
 
 

Table 3. Simulation result minimum corrosion path length when a corrosion path turn downward or skip an intersection or 
split into branches (Pup = 0, Psplit = 0). 
 

Sample Pdown Pskip Median of minimum path length (mm) Normalized ratio 
12 0.95 0.05 1.362 3.40 
13 0.90 0.10 1.435 3.59 
14 0.85 0.15 1.486 3.72 
15 0.80 0.20 1.586 3.96 
16 0.75 0.25 1.701 4.25 
17 0.70 0.30 1.812 4.53 
18 0.65 0.35 1.955 4.89 
19 0.60 0.40 2.124 5.31 
20 0.55 0.45 2.246 5.61 
21 0.50 0.50 2.488 6.22 

 
 
 

Table 4. Simulation result minimum corrosion path length when a corrosion path can split into two branches at the of a 
vertical step, but not turn upward or skip an intersection (Pup = 0, Pskip = 0). 
 

Sample Pdown Psplit Median of minimum path length (mm) Normalized ratio 
22 0.95 0.05 1.232 3.08 
23 0.90 0.10 1.196 2.99 
24 0.85 0.15 1.154 2.89 
25 0.80 0.20 1.142 2.86 
26 0.75 0.25 1.092 2.73 
27 0.70 0.30 1.054 2.63 
28 0.65 0.35 1.042 2.60 
29 0.60 0.40 1.016 2.54 
30 0.55 0.45 0.991 2.48 
31 0.50 0.50 0.960 2.40 

 
 
 
slightly increasing trends. When both probabilities are 
large, pup is more influential than pskip, when a corrosion 
path skips an intersection and continues to propagate in 
the horizontal direction, the total horizontal distance it 
travels will increase. However, when a corrosion path 
assumes an upward turn, both its horizontal distance and 
vertical distance traveled will increase. Additionally, pskip 
does not have the potential to decrease the number of 
corrosion paths that reach the bottom surface as does 
pup. 

Table 4 summarizes the simulation results for the 
setting where a corrosion path can split into two branches 
at an intersection at the end of any vertical step but it 
cannot turn upward or skip an intersection (pup = 0; pskip 
= 0). As with other settings, the probability of splitting at 
an intersection, psplit, varies from 0.05 to 0.5 in steps of 
0.05.  

As psplit increases, the median of the minimum path 
length tends to gradually decrease linearly (Figure 4). 
The psplit is relatively small compared to the influences 
of pup and pskip. The decrease in the median of the 
minimum path length is due to the fact that  the  minimum 

order statistic is likely to decrease as the number of paths 
reaching the bottom surface increases. In the case that 
pup and pskip are both equal to zero, the total number of 
paths that reach the bottom surface is the sum of the 
number of initial corrosion sites m and the number of 
splits that occurred during corrosion propagation. 
However, the effect of the total number of paths on the 
minimum order statistic is relatively small compared to 
the effects of pup and pskip. Figure 4 shows a 
representative sample of the number of splits that 
occurred for each psplit. As psplit increases from 0.05 to 
0.5, the observed number of splits changes from a 
magnitude of 102 to 104, but the variation in the median of 
the minimum path length is less than 0:3 mm, as shown 
in Table 4. 
 
 
Conclusions 
 
In this paper, we discuss an extension of the brick wall 
model proposed by Ruan et al. (2004). The basic brick 
wall model underestimates  the minimum path length that  
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                        Figure 4. Effect of probabilities (pup; pskip; psplit) on the median of the minimum path length. 

 
 
 
a corrosion path travels along grain boundaries in an 
aluminum alloy sample. This problem is addressed by 
modeling the behavior of corrosion paths at intersections 
of grain boundaries. Situations considered include the 
cases where a corrosion path might assume an upward 
turn, skip an intersection or split into branches. We found 
that small percentage changes in the probabilities of any 
of these options can result in significant changes in the 
median of the minimum order statistic and the normalized 
ratio.  

However, with a proper combination of these probabili-
ties, the extended model is able to obtain a good fit to the 
experimental data. This extension of the brick wall model 
represents a more precise description of the growth 
kinetics for AA2024-T3. Even though it is still unknown in 
practice which values are reasonable to assign to these 
probabilities for this type of alloy, the simulation of such 
phenomena can provide useful quantitative insights into 
the understanding of the corrosion kinetics in AA2024-T3. 
If deemed necessary for a given metal alloy, further 
refinement of this model is also possible. For example, a 
corrosion path might have positive probabilities to turn to 
one direction or split into two branches no matter whether 
it is at a horizontal or vertical step. That is, even at the 
end of a horizontal step the corrosion path might split into 
two branches, where one branch skips the intersection 
and the other turns to a vertical direction. Also, it is 
reasonable to allow a corrosion path to terminate within 
the metal when it meets another corrosion path from an 
opposite direction.  
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