Effects of aqueous leaf extract of *Cajanus cajan* on litter size and serum progesterone in pregnant rats

Luqman Aribidesi Olayaki¹*, Ibiyemi Olatunji-Bello⁴, Ayodele Olufemi Soladoye¹, Olusegun Rabiu Jimoh², Olaide Ghazal² and Martins Ighodalo³

¹Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
²Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
³Department of Pharmacology and Therapeutics, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
⁴Department of Physiology, Lagos State University, Lagos, Nigeria.

Accepted 28 July, 2009

Aqueous leaf extract of *Cajanus cajan* is consumed by pregnant women in our locality. However, its effect on pregnancy has not been studied. *C. cajan* is known to contain genistein and diadzein which are potent phytoestrogens. We studied the effect of aqueous leaf extract of *C. cajan* on litter size and serum progesterone in pregnant rats. Oral administration of *C. cajan* on timed-pregnant rats increased litter size from 7.2 ± 1.1 in the control group to 10.1 ± 1.5 (p < 0.01) and 10.6 ± 0.4 (p < 0.003) in 100 and 200 mg/kg respectively. Serum progesterone increased from 98.6 ± 3.5 ng/ml in the control group to 112.4 ± 5.3 ng/ml (p < 0.003) and 114.2 ± 3.7 ng/ml (p < 0.002) in the 100 and 200 mg/kg treated groups respectively. There was reduction in litter weight from 6.93 ± 0.2 g in the control group to 4.60 ± 0.3 g (p < 0.0002) and 4.40 ± 0.1 g (p < 0.0003) in the 100 and 200 mg/kg treated groups respectively. There was no statistical significant difference in the litter weight among the treated groups. Aqueous extract of *C. cajan* caused reduced maternal weight gain in the treated group compared to the control. Maternal weight gain reduced from 62.4 ± 3.4 g in the control to 58.9 ± 2.8 g (p = 0.053) and 57.6 ± 3.1g (p < 0.05) in the 100 and 200 mg/kg treated groups respectively. There was no statistical significant difference in the litter weight among the treated groups. In conclusion, oral administration of aqueous leaf extract of *C. cajan* increases litter size and plasma progesterone in pregnant rats.

Key words: *Cajanus cajan*, litter size, serum progesterone.

INTRODUCTION

Plant-derived chemicals that influence endocrine activities in both human and animals have received a great deal of attention due to their possible beneficial as well as adverse effects (Gamache and Acworth, 1998). Many herbs either wholly or their extracts are consumed by pregnant women, effects of which are not known in the mother and the children. This is common in the developing countries of the world.

*Cajanus cajan* belongs to the botanic family Fabaceae. It is known as pigeon pea (English), Otili (Yoruba), and Waken turawa (Hausa). It is grown in the forest and savannah regions of the world. Sun-dried leaf of *C. cajan* contains 70.4% moisture, 7.0% crude protein, 10.7% crude fibre and 7.9% nitrogen-free extract, 1.6% fat and 2.3% ash. Phytoestrogen constituents of *C. cajan* include genistein and diadzein with lignan secoisolariciresinol (Mazur and Aldercreutz, 1998).

Some of the medicinal uses of *C. cajan* according to Morton (1976) and Duke (1981) are for the treatment of jaundice, bronchitis, cough, antihelminthic, sedative and child delivery. *C. cajan* leaf extract has also been shown to have dose-dependent reduction in uterine contraction in rats (Olatunji-Bello et al., 2002). *C. cajan* also has hypoglycaemic, antischickling and anti-plasmodial properties (Giri et al., 1987; Ogoda et al., 2002; Duker-Eshun et al., 2004). In view of the fact that *C. cajan* is consumed by pregnant women, this study was designed to provide information on

*Corresponding author. E-mail: olayaki@gmail.com. Tel.: +234-8033814880.
Materials and Methods

C. cajan leaves were purchased from a local herb store at Ijora, Lagos, Nigeria. The leaves were authenticated at the Pharmacognosy Department of the College of Medicine, and Department of Botany and Microbiology, University of Lagos, using a herbarium specimen. The leaves were washed and air-dried. The aqueous extract of C. cajan leaf was prepared using the method described by Farida et al. (1987), then filtered and the residue was discarded. The filtrate was subsequently evaporated to dryness. The resulting powder of the extract was stored in capped bottles until needed.

The rats were divided into three groups as follows:

1. Control group (Group I): received 10 ml/kg body weight of distilled water (vehicle).
2. Treated group 1 (Group II): received 100 mg/kg body weight of the extract.
3. Treated group 2 (Group III): received 200 mg/kg body weight of the extract.

The rats were allowed free access to tap water and rat pellets (Bendel Feeds and Flour Mills Ltd., Ewu, Nigeria) with following composition: carbohydrate 67%, protein 21%, fat 3.5%, fibre 6%, calcium 0.8% and phosphorus and phosphate 0.8%. They were acclimatized for two weeks before the commencement of the experiment. They received humane care.

The rats were divided into three groups as follows:

- Group I: Control, received 10 ml/kg body weight of distilled water (vehicle).
- Group II: Received 100 mg/kg body weight of the extract.
- Group III: Received 200 mg/kg body weight of the extract.

Table 1. Effects of aqueous extract of C. cajan on litter size, litter weight, maternal weight gain and serum progesterone in rats.

<table>
<thead>
<tr>
<th></th>
<th>Group I (Control)</th>
<th>Group II (C. cajan 100 mg/kg)</th>
<th>Group II (C. cajan 200 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter Size</td>
<td>7.2 ± 1.1 a</td>
<td>10.1 ± 1.5 b</td>
<td>10.6 ± 0.8 b</td>
</tr>
<tr>
<td>Litter Weight (g)</td>
<td>6.93 ± 0.2 a</td>
<td>4.60 ± 0.3 b</td>
<td>4.40 ± 0.1 b</td>
</tr>
<tr>
<td>Maternal Weight Gain (g)</td>
<td>62.4 ± 3.4 a</td>
<td>58.9 ± 2.8 b</td>
<td>57.6 ± 3.1 b</td>
</tr>
<tr>
<td>Serum Progesterone (ng/ml)</td>
<td>98.6 ± 3.5 a</td>
<td>112.4 ± 5.3 b</td>
<td>114.2 ± 3.7 b</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD. Number of rats in each group = 7. ab Different superscripts on means ± SD along the same row indicate p < 0.05.

RESULTS

Effects of aqueous extract of C. cajan on litter size, litter weight, maternal weight gain and serum progesterone in rats were shown in Table 1.

C. cajan caused increased litter size from 7.2 ± 1.1 in the control group to 10.1 ± 1.5 (p < 0.01) and 10.6 ± 0.8 (p < 0.003) in 100 and 200 mg/kg C. cajan treated group respectively. There was no statistical significant difference in the litter size among the treated groups.

There was reduction in litter weight from 6.93 ± 0.2 g in the control group to 4.60 ± 0.3 g (p < 0.0002) and 4.40 ± 0.1 g (p < 0.0003) in the 100 and 200 mg/kg treated groups respectively. There was no statistically significant difference in the litter weight among the treated groups.

Aqueous extract of C. cajan caused reduced maternal weight gain in the treated group compared to the control. Maternal weight gain reduced from 62.4 ± 3.4 g in the control to 58.9 ± 2.8 g (p = 0.053) and 57.6 ± 3.1 g (p < 0.05) in the 100 and 200 mg/kg treated groups respectively. There was no statistically significant difference in the litter weight among the treated groups.

There was increase in serum progesterone in C. cajan treated group compared to the control group. Serum pro-
gesterone increased from 98.6 ± 3.5 ng/ml in the control group to 112.4 ± 5.3 ng/ml (p < 0.003) and 114.2 ± 3.7 ng/ml (p < 0.002) in the 100 and 200 mg/kg treated groups respectively.

None of the litter has any external morphological abnormality.

DISCUSSION

The results of our study indicate that aqueous extract of C. cajan increased litter size and serum progesterone in rats and reduced litter weight and maternal weight gain during pregnancy.

Studies have shown that C. cajan contains phytoestrogen genistein, diadzein and secoisolariciresinol (Shinde et al., 2008; Mazur and Aldercrentz, 1998). Even though, phytoestrogens are group of plants derived compounds that structurally and functionally mimic mammalian oestrogen, studies have shown that their administration increases progesterone synthesis and production. Kaplan et al. (1981) showed that genistein increases progesterone production, though at a higher concentration, there is a decrease in the production of progesterone. Williams et al. (1997) also showed that in vitro administration of genistein in rabbit and bovine granulosa cells stimulates progesterone secretion. However, studies by Haynes-Johnson et al. (1999) and Nynca and Ciereszko (2006) showed that genistein inhibit the production of progesterone in rats and porcine granulosa cells respectively. However, Cotroneo et al. (2001) reported an increase in progesterone receptors in the uterus of rats that have prepubertal or in utero/lactational exposure to genistein while Picherit et al. (2000) observed decrease contractility of in vitro rat uterine muscle following exposure to diadzein and genistein due to blockade of estrogen receptor. A study by Olatunji-Bello et al. (2000) showed that aqueous extract of the leaves of C. cajan caused a significant reduction in the force and frequency of contraction of rat uterus.

The increased concentration of progesterone may be due to effect of genistein on the rats’ granulosa cells. Genistein is the most potent phytoestrogen and is known to stimulate the production of progesterone. However, study by Richter et al. (2009), showed that phytoestrogens (genistein and daidzein) reduced progesterone production in human term trophoblast cells. In rats, studies by Haynes-Johnson et al. (1999) showed that genistein reduced plasma progesterone in rats, but studies by researchers such as Picherit et al. (2000) and Cotroneo et al. (2001), have shown that phytoestrogens increase progesterone receptors in the uterus of rats.

The increase in progesterone detected in our study may be due to several differences in the study designs, including the strain of rats used for the experiment (Sprague-Dawley) and timing of serum collection. The serum progesterone was higher in the treated groups compared to the control, though, all the values for treated and control were within normal physiological value during the third trimester of pregnancy (65 - 229 ng/ml). The timing of our serum collection was at the point of highest plasma progesterone concentration during pregnancy in humans and rats (Guyton and Hall, 2000; Puri and Garfield, 1982).

Progesterone has an antiestrogenic effect on the myometrial cell, decreasing their excitability, their sensitivity to oxytocin, and their spontaneous electrical activity while increasing their membrane potential (Ganong, 2003). The increased litter size could be due to the ability of progesterone to reduce myometrial cells excitability, thereby increasing the number of implantation and subsequent number of life fetuses. The reduced litter weight in the treated groups could be due to increased number of fetuses which could have resulted into inadequate nutrients, poor placental perfusion, fetal crowding and unknown factors (Chitkara and Berkowitz, 2002). However, because of the accompanied reduction in maternal weight, there might be associated antinutrient agents in the C. cajan extract. There is need for further study in order to isolate the active compound that is responsible for the increased progesterone and those that are responsible for the reduced maternal weight and fetal weight.

In conclusion, oral administration of aqueous leaf extract of C. cajan increases litter size and plasma progesterone in pregnant rats.

REFERENCES


