Indigenous vegetables of Nepal for biodiversity and food security

Debendra Shrestha
Coffee and Tea Development Section/ Ministry of Agriculture Development, Kirtipur, Kathmandu, Nepal. E-mail: deebendra9999@gmail.com. Tel: 977-9849722022.

Accepted 5 November, 2012

Abstract

Nepal has great biodiversity, as a result of its extreme variations in altitude, ecology, farming systems and varied socio-cultural settings. In Nepal, about 200 plant species are consumed as vegetables. The aim of paper is to point out existing indigenous vegetables in Nepal and how these are utilized for food security and biodiversity conservation. Indigenous vegetables are considered valuable because of their ability to fit into year round production, adaptability to adverse condition and their nutritional value. But, only a very few indigenous vegetables are still cultivated at field scale. Most of them are neglected and, many landraces of vegetables are in the process of being replaced by modern varieties. Along with this, the indigenous knowledge associated with the cultivation, utilization, and conservation of indigenous vegetables is also endangered. But, there has been very limited information available about the identification, occurrence, collection, and utilization of indigenous vegetables in Nepal. In this scenario, promotion, conservation, utilization and commercialization of indigenous vegetables can be a better alternative towards improving the food security and nutritional status of the community, particularly those people residing in remote areas and in the hills.

Key words: Commercialization, conservation, indigenous vegetables, landraces, vegetable diversity.

INTRODUCTION

Nepal is situated on the southern slopes of the central Himalayas. Nepal's great biodiversity is associated with the country's exceptional diversity of topographic, climatic, and agro-ecological conditions. According to these conditions, Nepal is divided into four main physiographic zones (MFSC/GEF/UNDP, 2002), High Himal (above 5 000 m asl.); High Mountains (3 000-5 000 m asl.) with alpine or sub-alpine climate; Mid-Hills (1000-3 000 m asl.) with temperate or subtropical climate, and Lowlands (below 1000 m asl.) with tropical climate. As a result of diverse agro-ecological and socio-economic conditions high crop genetic diversity at farm level can be observed (Rana et al., 1998).
In Nepal, between 5800 and 6500 species of flowering plants (WCMC, 1994) have been estimated, about 1500 of which are considered useful (Manandhar, 2002). Out of these, 651 species are economically useful including 440 species of wild food plants. About 200 plant species are consumed as vegetables (Manandhar, 2002), most of them, however, are regarded underutilized or neglected. The availability of the indigenous vegetables has declined
over time drastically (Aryal et al., 2009) due to their high market demand and high profitability (Subhrendu and Sills, 2001) that may lead to the loss of local indigenous vegetables resources (Lohar et al., 1995). Promotion, utilization and commercialization of the indigenous vegetables can help in the conservation of these vegetables, at the same time combating the nation's food and nutrition insecurity particularly in remote and hilly region (ABTRACO, 2005). In Nepal, efforts to collect and utilize the largely eroding genetic resources of indigenous vegetable species have only incipiently started and very limited information available in relation to identification, status, collection, and utilization of indigenous vegetables. Hence, this paper aims at gathering the available information related to occurrence, conservation status and utilization of indigenous vegetables of Nepal.

MATERIALS AND METHODS

This paper was prepared on the basis of review from different printed materials, books, research papers, reports of different orga-
nizations like Department of Agriculture, LI-Bird, Forest and Soil Conservation Department and related different websites.

During the reviewed period, discussion was made with the professors, IAAS; technicians involved in vegetable development programs, indigenous communities and farmers involved in cultivation and exploration of these commodities.

RESULTS AND DISCUSSION

Why indigenous vegetables?

Cultivating and gathering indigenous vegetables for both self-consumption and sale are still very common in Nepal, particularly in remote areas (Manandhar, 1982). These vegetables mainly contribute to the well-being of thousands of poor farmers by enabling them to participate in markets (Weinberger and Msuya, 2004).

During food scarcity periods, people from urban and rural communities heavily depend on gathering these vegetables from their natural habitats (Dangol, 2003; Joshi et al., 2007). Indigenous vegetables are considered valuable because of their ability to fit into year round production systems, their nutritional value, and the danger of their extinction (Engle and Altoveros, 2000). Besides that, they could make a contribution to world food production because they are well adapted to adverse environmental conditions (Shava, 2005) and generally resistant to pests and diseases.

Furthermore, they have been traditional part of cropping systems, especially home gardens (Midmore et al., 1991). Some indigenous vegetables such as Dioscorea species were reported to be stored for future use in Chepang community of Nepal (Aryal et al., 2009). They play a highly significant role in food security of the under privileged in both urban and rural settings (Schippers, 1997). They are also valuable sources of energy and micronutrients in the diets of isolated communities (Grivetti and Ogle, 2000). Further, they may serve as income sources (Humphry et al., 1993, Smith et al., 1995, Smith et al., 1996).

In remote and hills of the country, lacking irrigation facilities and marginal lands, there is plenty of scope for cultivating underutilized plant species and exploiting their products to provide food for the rural poor (ABTRACO, 2005).

At the present, the world is over-dependent on a few plant species (Jaenicke and Hoschle-Zeledon, 2006). Intensive agriculture, using hybrid and modern crop varieties, has not been fully successful in combating the nation's food insecurity and nutrition issues in remote and hills of Nepal. In this scenario, promotion, conservation and utilization of indigenous crops can be a better alternative towards improving the food and nutrition security (ABTRACO, 2005), malnutrition alleviation and the diversification of the agricultural environment (Engle and Faustino, 2006), particularly those people residing in remote areas and in the hills.

Indigenous vegetables of Nepal

Indigenous vegetables found in Nepal are listed and their morphology, plant parts used, part propagated, habitat etc. are mentioned (Table 1).

Loss of indigenous vegetable diversity

Despite their importance for subsistence, income generation and culture; the availability of indigenous vegetables is declining at an alarming rate in all areas of Nepal (Aryal et al., 2009), combined with genetic and cultural erosion. This occurs particularly in easily accessible regions, where commercialization of the production is possi ble. Loss of these vegetables occurred due to population pressure (Upreti and Ghale Upreti, 2002); expansion of mechanized and intensive agriculture; introduction of exotic vegetable species and improved varieties (Manandhar, 1989); habitat destruction; over-exploitation of wild plants (Upreti et al., 2012) and natural resources (Lohar et al., 1995). This process also accelerated by improper land use and habitat change, climate change causing more frequent droughts and fires, and deforestation (Joshi et al., 2007). Along with this, the indigenous knowledge associated with the cultivation, utilization, and conservation of Indigenous vegetables is also endangered (Engle and Faustino, 2006). Consequently, indigenous land races of vegetables are being lost or in the process of being replaced by modern varieties as farmers prefer high yielding hybrid varieties (FAO, 1998). Ultimately, the farmers indigenous seed supply system has been weakened (Lohar et al., 1995). Only a very few indigenous vegetables such as Fagopyrum esculentum (Mithe phapar), F. tartaricum (Tite phapar), Amaranthus caudatus (Latte), and A. lividus (Lude) were still cultivated in farmer's field (Shrestha et al., 2004).

High profitability from indigenous vegetables and their products resulted in their high demand with limited supply, consequently, that may lead to over harvesting (Subhrendu and Sills, 2001). Species such as Dryopteris cochleata (Danthe), Polygonum molle(Thotne), Asparagus racemosus (Kurilo), and Rheum australe (Padamchal) were considered to be endangered because of their increasing market demand, but are mostly (and often excessively) gathered from their natural habitats instead of making deliberate efforts to cultivate them permanently as vegetables in their fields or home gardens (Joshi et al., 2007). Cultivation of exotic vegetables for subsistence and sale increases rapidly at the expense of indigenous ones, partly promoted by development programs (Shrestha et al., 2004). Many wetland sites, the important habitats of indigenous crop species are degrading and getting lost due to encroachment for conversion into rice fields, fish ponds, extended settlements, and sedimentation (Siwakoti and Tiwari, 2007). The disappearance of indigenous vegetables in some areas may also be a consequence of the introduction of improved agricultural techniques, in which many indigenous vegetables are treated as weeds

Table 1. List of indigenous vegetables found in Nepal.

S/N	Scientific name	Family	Local name	Morphology	Used plant part	Part propagated	Altitude	Habitat	Season of availability
1	Abelmoschus manihot	Malvaceae	Ban nalu	Herb	Fruit	Seed	500		May - June
2	Abelmoschus moschatus	Malvaceae	Lata kasturi	Herb	Fruit	Seed	500		May - June
3	Acmelia caliva	Asteraceae	Lato ghans	Herb	Flower	Seed	1500	Forest	August - November
4	Ageratum conyzoides	Asteraceae	Gane	Herb	Leaf	Seed	1800	fallow	May - June
5	Allium stracheyi	alliaceae	Januarygali	Herb	Leaf	Seed	3900	Shrub land	August - October
6	Allium wallichii	alliaceae	Dundu	Herb	Leaf	Seed	2600	Shrub land	August - October
7	Alternanthera Sessilis	Amaranthaceae	Saranchi sag	Herb	Leaf		1300	Fallow	May - July
8	Amaranthus caudatus	Amaranthaceae	Latte sag	Herb	Leaf	Seed	1300	Fallow	April -July
9	Amaranthus lividus	Amaranthaceae	Lude sag	Herb	Leaf	Seed	1300	Fallow	April - July
10	Amaranthus spinosus	Amaranthaceae	Ban lunde	Herb	Leaf	Seed	1300	Fallow	April - July
11	Amaranthus viridis	Amaranthaceae	Lude sag	Herb	Leaf	Seed	1300	Fallow	April - July
12	Anagallis arvensis	Primulaceae	Armale	Herb	Leaf	Seed	1500	wild	December - March
13	Arisaema consanguineum	Araceae	Raksya banko	Herb	Shoot	Corm	2800	Forest	April - May
14	Arisaema flavum	Araceae	timchu	Herb	Shoot	Corm	2300	Forest	May - June
15	Arisaema jacquemontii	Araceae	Sarpa komaka	Herb	Root/Tuber	Corm	2800	Forest	April -May
16	Arisaema tortuosum	Araceae	banko	Herb	Roottuber	Corm	1500	Forest	June- July
17	Arisaema utile	Araceae	dhokaya	Herb	Shoot	Corm	1800	Forest	June- Jul
18	Artocarpus heterophyllus	Moraceae	katahar	Herb	Tree	Seed	500		April - June
19	Asparagus filicinus	Asparagaceae	Ban kurilo	Herb	Shoot	Seed/root	1800	Forest	May - June
20	Asparagus racemosus	Asparagaceae	kurilo	Herb	Shoot	Seed/root	1800	Forest	April - June
21	Basella alba	Basellaceae	Poi sag	Herb	Leaf	seed	500	fallow	June -July
22	Bassia latifolia	Sapotaceae	mahuwa	tree	Flower		200	Forest	March-April
23	Bauihinia malabarica	Fabaceae		tree	Flower	Seed/stem	500		August - September
24	Bauihinia purpurea	Fabaceae	Tanki	tree	Flower	Seed/stem	1500		August - October
25	Bauihinia vahii	Fabaceae	Bhoria	climber	Fruit	Seed/stem	500	Forest	August - September
26	Bauhinia variegate	Fabaceae	Koiralo	tree	Flower	Seed/stem	1500	Forest.	April - May
27	Bidens biternata	Asteraceae	Kuro	Herb	Shoot	seed	1300	Fallow	May - June
28	Bidens pilosa	Asterceae	Kuro	Herb	Shoot	Seed	1400	Fallow	May - June
29	Blumea lacera	Asteraceae	Khicha bhwatha	Herb	Leaf	Seed	1400	Fallow	May - June
30	Boerhavia diffusa	Nyctaginceae	Punarva	Herb	Leaf	Seed	500	Fallow	June - July
31	Bombax ceiba	Bombaceae	Simal	Trees	Flower	Seed	500	Fallow	February - March
32	Botrychium lanuginosum	Ophioglossaceae	Jaluko	Herb	Shoot	Root	2100		May - June
33	Caitha palustris	ranunculaceae		Herb	Leaf		4200	Fallow	August - September
34	Capparis spinosa	Capparaceae	Bagh mukhwa	Shrub	Fruit	Seed	500	Forest.	November - December

Table 1. Contd.

35	Capsella bursa-pastoris	Brassicaceae	Tori ghans	Herb	Leaf	Seed	1500	Fallow	January - April
36	Caragana brevispina	Fabaceae		Shrub	Flower	Seed	3600	Fallow	August - September
37	Cardamine scutata	Brassicaceae	Chamsure ghans	Herb	Leaf	Seed	1500	Shrub land	February - March
38	Cassia tora	fabaceae	Chakramandi	Herb	Leaf	seed	200	Fallow	July - August
39	Cautleya spicata	Zingiberaceae	Sano saro	Herb	Stem	Rhizome	1800	Fores	May - June
40	Centella asiatica	Apiaceae	GhodtAprile	Herb	Leaf	seed	1500	Shrub land	February - April
41	Chenopodium album	chenopodiaceae	Bethe	Herb	Leaf	seed	1400	wild	January - March
42	Chenopodium ambrosioides	Chenopodiaceae	Rato latte	Herb	Leaf	seed	1500	Fallow	August - September
43	Chenopodium murale	chenopodiaceae	Kalo bethe	Herb	Leafv	seed	1800	wild	August - October
44	Chloropohytum nepalense	Liliaceae	Ban pyaj	Herb	Leaf	Seed	2000	Forest	August - Sepember
45	Cirsium wallichii	Asteraceae	Thakal	Herb	Shoot	Seed	1500	Fallow	June-July
46	Clematis acuminata	Ranunculaceae	Junege lahara	Climber	Shoot	Stem	2100	Forest	July - August
47	Clematis buchananiana	Ranunculaceae	Junege lahara	Climber	Shoot	Stem	2100	Forest	August - September
48	Cleome viscosa	Capparaceae	Swibhama	Herb	Leaf	Seed	500	Fallow	August - September
49	Clintonia udensis	liliaceae		Herb	Leaf		3600	Forest	March - June
50	Colocasia esculenta	Araceae	Pindalu	Herb	root /tuber	Tuber	1300		August - October
51	Commmelina bengalensis	Commelinaceae	Ban kane	Herb	root/tuber	Stem	500	Forest	June - July
52	Commmelina paludosa	Commelinaceae	Kane sag	Herb	root /tuber	Stem	500	Forest	June - July
53	Chorchorus acutangulus	Tiliaceae	Nalu	Shrub	Leaf		200	Shrub land	June - July
54	Cortia depressa	apiaceae	Bhutkesh	Herb	Leaf		1500	Shrub land	July - August
55	Costus apeciosus	Zingiberaceae	Betlauri	Herb	Shoot		1500		Junee-Jul.
56	Crateva religiosa	Capparaceae	sipligan	Tree	Shoot	Stem/root	1300		Mar.-April.
57	Crotalaria pallida	Fabaceae	Chhinchhine swan	Herb	Flower	Seed	500		May-Junee.
58	Crotolaria spectabillis	Fabaceae	Ban sanai	Herb	Flower	Seed	500	Fallow	August.-Nov.
59	Crotolaria tetragona	Fabaceae		Herb	Fruit	Seed	500	Fallow	Sept.-Oct.
60	Deeringia amaranthaoides	Amaranthaceae		Herb	Leaf	Seed	200	Shrub land	June - July
61	Dendrocalamus hamiltonii	Poaceae	Tama bans	Grass	Shoot	Seed	1300		June - July
62	Dendrocalamus strictus	Poaceae	Tama bans	Grass	Shoot	Stem	500		June - July
63	Deparia boryana	Dryopteridaceae	Kalo neuro	Herb	Leaf	Seed	1500	Forest	June - July
64	Dillenia indica	Dilleniaceae	Panchphal	Tree	Fruit		500		January - February
65	Dioscorea alata	Dioscoreaceae	Ghar tarul	climber	Root/tuber	Tuber	1300		December - February
66	Dioscorea bulbifera	Dioscoreaceae	Ban Tarul	climber	Roottuber	Tuber	1500	Forest	December - February
67	Dioscorea deltoidea	Dioscoreaceae	Tarul	climber	Roottuber	Tuber	1500		December - February

Table 1. Contd.

68	Dioscorea esculenta	Dioscoreaceae	Tarul	climber	Roottuber	Tuber	1300		December - February
69	Dioscorea pentaphylla	Dioscoreaceae	Mithe tarul	climber	Roottuber	Tuber	1500		December - February
70	Diplazium esculentum	Drypteridaceae	Masino neuro	Herb	Leaf	Seed	1300		May - Jul
71	Diplazium	Drypteridaceae	Neuro	Herb	Leaf	Seed	1300		May - July
72	Diplazium	Drypteridaceae	Neuro	Herb	Leaf	Seed	2100	Forest	May - July
73	Diplazium	Drypteridaceae	Neuro	Herb	Leaf	Seed	1300		May - June.
74	Disporum cantoniense	liliaceae	Sano kukur daino	Herb	Leaf	Seed		Forest	January - March
75	Drepanostachyum falcatum	Poaceae	Nigalo	Grass	Shoot	Stem	500		April - June
76	Drymaria cordata	Caryophyllaceae	Abhijalo	Herb	Leaf		1400	Forest	May - June
77	Dryopteris cochleata	Dryoperidaceae	Danthe	Herb	Leaf		500	Forest	March - May
78	Eclipta prostrate	Asteraceae	Bhringraj	Herb	Leaf	Seed	1300	wild	June - July
79	Edgaria darjeelingensis	Cucurbitaceae	Chathil	Climber	Fruit	Seed /stem	3600	Forest	August - Sept
80	Elatostema platyphyllum	Urticaceae	Sano gangleto	Herb	Leaf	Seed /stem	1500	Forest	May - June
81	Elatostema sessile	Urticaceae		Herb	Leaf	Seed /stem	1500	Forest	May - June
82	Emilia sonchiholia	Asteraceae	Tori phool	Herb	Leaf	seed	200	Fallow	July - August
83	Eryngium foetidum	Apiaceae	Brameli dhaniya	Herb	Leaf		1800		August.-Sept
84	Erysimum hieracifolium	Brassicaceae		Herb	Leaf	Seed	3600	Fallow	Junee.-Jul.
85	Euphoria hirta	Euphorbiaceae	Dudhe ghans	Herb	Leaf	Root	1400	Fallow	May - June
86	Fagopyrum dibotrys	Polygonaceae	Ban phaper	Herb	Leaf	Seed	1300		May - June
87	Fagopyrum esculentus	Polygonaceae	Mithe phaper	Herb	Leaf	Seed	1300		May - June
88	Fagopyrum tataricum	Polygonaceae	Tite phaper	Herb	Leaf	Seed	1300		May - June
89	Ficus auriculata	moraceae	Timila	tree	Leaf	Stem cutting	1500		January - March
90	Ficus hispada	moraceae	Khasreto	tree	fruit	Stem cutting	500	Forest	July - August
91	Ficus lacor	moraceae	kavro	tree	Leaf	Stem cutting	200	Forest	May - June
92	Girardiana diversifolia	Urticaceae	Lekali sisnu	Herb	Leaf	Rooted stem	2300	Shrub land	June - August
93	Holarrhena pubescens	Apocynaceae	Indrajau	shrub	Leaf		500	Forest	May - June
94	Houttuynia cordata	Saururaceae	Gane	Herb	Shoot		1500	Forest	May - June
95	Impatiens bicornuta	Balsaminaceae		Herb	Shoot		1800	Forest	August - September
96	Indigofera hebepetala	Fabaceae	Masino sakhino	Shrub	Fruit	Seed	2100	Forest	August - September
97	Indigofera pulchella	Fabaceae	sakhino	Shrub	Fruit	Seed	1800	Forest	September - December
98	Ipomoea alba	Convolvulaceae	Chandra kali	Herb	Flower	Seed,stem,root	500	Fallow	May - June

Table 1. Contd.

99	Ipomoea aquatica	Convolvulaceae	Kalmi sag	Herb	Leaf	Seed, stem, root	500	Fallow	February - July
100	Justicia adhatoda	Acanthaceae	Asuro	Shrub	Leaf	Stem /root	1500	Shrub land	January - February.
101	Lathyrus aphaca	Fabaceae	Bahabulaba	Herb	Leaf	Seed	1300	Fallow	March - April.
102	Launaea asplenifolia	Asteraceae	Dudhe jhar	Herb	Leaf	Seed	500	Fallow	June - July
103	Lecanthus peduncularis	Urticaceae	Khole jhar	Herb	Leaf	Root	1500	Forest	May - June
104	Leucas cephalotes	Lamiaceae	Guma	Herb	Leaf		500	Shrub land	March - June
105	Lilium nepalense	Liliaceae	Ban Lasun	Herb	Leaf	Bulb	1800	Forest	March - April
106	Lygodium japonicum	Schizaeaceae	Januaryai lahara	Climber	Leaf	Stem/root	200	Forest	May-June
107	Macropanax dispermus	Araliaceae	Chiniya	Tree	Shoot		1800	Forest	Mar.-May
108	Malva verticillata	Malvaceae	Laphe sag	Herb	Leaf	Seed	500		May - June
109	Manihot esculenta	Euphorbiaceae	Simal tarul	Shrub	Root/tuber	Root/shoot	500		December - February.
110	Medicago falcata	Fabaceae	Bhirin sag	Herb	Leaf	Seed	500	Fallow	September - December
111	Moringa oleifera	Moringaceae	Sajiwan	Tree	Fruit		500		April - May
112	Mucuna pruriens	Fabaceae	Kauso	Climber	Fruit	Seed	1300		March - April
113	Natsiatum herpeticum	Icacinaceae	Kali lahara	Herb	Leaf	Seed	200	Fallow	May - June
114	Oenanthe javanica	Apiaceae		Herb	Leaf		1500	Forest	May - June
115	Oenanthe linearis	Apiaceae	Khaki baku	Herb	Leaf		1500	Forest	May - June.
116	Ophioglossum nudicaule	Ophioglossaceae	Jibre sag	Herb	Leaf	Root	1800	Fallow	March - April
117	Ophioglossum reticulatum	Ophioglossaceae	Jibre sag	Herb	Leaf	Root	1800	Fallow	March - April
118	Oreocnide frutescens	Uricaceae		Herb	Leaf	Seed	2000	Forest	August - September
119	Oroxylum indicum	Bignoniaceae	Tatelo	Tree	Fruit	Seed	500	Forest	March - May
120	Osmunda claytoniana	Osmundaceae		Herb	Leaf		2100	Forest	May - June
121	Peperomia pellucida	Piperaceae	Lata pate	Herb	Leaf	Seed, root, stem	200	Forest	July - August
122	Persicaria microcephala	Polygonaceae	Ban pire	Herb	Leaf	Seed	1500	Forest	July - August
123	Persicaria nepalensis	Polygonaceae	Priya ghans	Herb	Leaf	Seed	1500	Forest	May - June
124	Persicaria perfoliata	Polygonaceae	Ghumauro kanda	Climber	Leaf	Seed	1300	Fallow	May - June.
125	Persicaria runcinata	Polygonaceae		Herb	Leaf	Seed		Forest	July - August
126	Phlogacanthus thyrsiformis	Acanthaceae		Shrub	Leaf		500	Forest	March - May
127	Phoenix acaulis	Arecaceae	Thakal	Tree	Fruit	Seed/tuber	500		June - July
128	Phytolacca acinosa	Phytolaccaceae	Jaringo sag	Herb	Leaf			Forest	May - June
129	Pilea symmeria	Urticaceae		Herb	Leaf	Seed	1500		May - June
130	Pilea umbrosa	Urticaceae	Nil danthe	Herb	Leaf	Seed	1500		May - June
131	Piptanthus nepalensis	Fabaceae	Suga phool	Shrub	Flower	Seed	3400		April - May
132	Pithecellobium dulce	Fabaceae	Jalebi	Shrub	Flower	Seed	500	Forest	May - June
133	Plantago erosa	Plantaginaceae	Isapgo	Herb	Leaf		1500	Fallow	January - February

Table 1. Contd.

134	Plantago lanceolata	Plantaginaceae		Herb	Leaf		2300	Fallow	January - February
135	Pleurospermum angelicoides	Apiaceae		Herb	Leaf		2500	Fallow	Jul.-August.
136	Pleurospermum apiolens	Apiaceae		Herb	Leaf		3600	Fallow	August - September
137	Polygonatum cirrhifolium	Liliaceae		Herb	Leaf		3600	Forest	August - September
138	Polygonatum verticillatum	Liliaceae	Khinraula	Herb	Leaf		3600	Forest	May - June.
139	Polygonum molle	Polygonaceae	Thotne	Herb	Shoot	Seed	1500		February - April
140	Polygonum plebeium	Polygonaceae	Baluni sag	Herb	Leaf	Seed	1300	Fallow	Year round
141	Polystichum squarrosum	Dryopteridaceae	Phusre neuro	Herb	Shoot		1500	Forest	May - June.
142	Portulaca oleracea	Portulaca oleracea	Nundhiki	Herb	Shoot		1300	Fallow	Year round
143	Pouzolzia sanguinea	Urticaceae		Herb	Leaf	Seed/root	2100	Fallow	July - August
144	Pteridium aquilinum	Dennstaedtiaceae		Herb	Shoot		1400	Forest	July - July
145	Ranunculus diffusus	Ranunculaceae	Nakore	Herb	Leaf		1500	Fallow	January-February
146	Ranunculus sceleratus	Ranunculaceae		Herb	Leaf		1500	Fallow	Year round
147	Remusatia pumila	Araceae		Herb	Leaf	Tuber	2500	Forest	May - June
148	Rheum australe	Polygonaceae	Padamchal	Herb	Leaf	Seed	3900	Shrub land	May - August
149	Rhododendron arboreum	Ericaceae	Laligurans	Tree	Flower		1500	Forest	February - April
150	Rorripa indica	Brassicaceae	Pahelo jhar	Herb	Leaf	Seed	1300	Forest	February - May
151	Rorripa nasturtium	Brassicaceae	Sim sag	Herb	Leaf	Seed	1500	Forest	Year round
152	Rumex acetosa	Polygonaceae	Amile ghans	Herb	Leaf	Seed	2000	Forest	August - September
153	Rumex dentatus	Polygonaceae		Herb	Leaf	Seed	1800	Forest	July - August
154	Rumex hastatus	Polygonaceae	Charemala	Herb	Leaf	Seed	500	Forest	February - March
155	Rumex nepalensis	Polygonaceae	Halhale	Herb	Leaf	Seed	1500	Fallow	August - September
156	Rumex vesicarius	Polygonaceae	Bhote palunge	Herb	Leaf	Seed	2000	Fallow	May - June
157	Sagittaria sagittifolia	Alismataceae		Herb	Leaf		500	Fallow	July - August
158	Sambucus adnata	CAprilifoliaceae		Shrub	Shoot		200	Forest	May - June
159	Smilax aspera	Smilacaceae	Kukurdiano	Climber	Shoot	Seed/corm	1500	Forest	May - June
160	Smilax ferox	Smilacaceae	Kukurdiano	Climber	Shoot	Seed/corm	1500	Forest	May - June
161	Smilax lanceifolia	Smilacaceae	Chhatiwan	Climber	Shoot	Seed/corm	1500	Forest	May - June
162	Smilax ovalifolia	Smilacaceae	Kukurdiano	Climber	Shoot	Seed/corm	2100	Forest	May - June
163	Smilax perfoliata	Smilacaceae	Kukurdiano	Climber	Fruit	Seed/corm	1800	Forest	May - June
164	Smilax rigida	Smilacaceae		Climber	Fruit	Seed/corm	1800	Forest	May - June
165	Solanum nigrum	Solanaceae	Kalo bihi	Leaf	Leaf	Seed	1500	Fallow	May - June
166	Solanum torvum	Solanaceae	Thulo bihi	Herb	Fruit	Seed	500	Fallow	August - October
167	Solena heterophylla	Cucurbitaceae	Golkankri	Herb	Fruit	Seed/stem	1500	Forest	Jul - August
168	Sonchus oleraceus	Asteraceae	Dudhi kanda	Herb	Leaf	Root/seed	1300	Fallow	May - June

Table 1. Contd.

169	Sonchus wightianus	Asteraceae	Tite sag	Herb	Leaf	Root/seed	1300	Fallow	July - August
170	Spermadictyon suaveolens	Rubiaceae	Ban champa	Shrub	Shoot		1400	Forest	August - September
171	Stellaria monosperma	Caryophyllaceae	Jethimadhu	Herb	Leaf		1500	Forest	May - June
172	Tamilnadia uliginosa	Rubiaceae	Pidar/Maidal	Shrub	Fruit		500	Shrub land	September -October
173	Tectaria macrodonta	Dryopteridaceae	Kalo neuro	Herb	Shoot	Rhizome	1500	Forest	June - July
174	Thamonocalamus aristatus	Poaceae	Ban nigalo	Grass	Shoot	Stem	200	Forest	June - July
175	Thelypteris multilineata	Thelypteridaceae	Koche	Herb	Shoot	Rhizome	2100	Forest	June - July
176	Trianthema portulacastrum	Aizoaceae	Gadapuraina	Herb	Shoot		500	Fallow	April-May
177	Urica dioica	Urticaceae	Sisnu	Herb	Leaf	Seed/plant	1400	Fallow	Year round
178	Vicia angustifolia	Fabaceae	Kutilkosa	Herb	Fruit	Seed	500	Fallow	March - April
179	Vicia hirsuta	Fabaceae	Kutilkosa	Herb	Fruit	Seed	200	Fallow	June - July
180	Woodwardia biserrata	Blechnaceae		Herb	Stem		1500	Fallow	June - July
181	Unidentified a)	Araceae	Dudhe pidalu	Herb	Root/tuber	Corm			January -March
182	Unidentified b)	Araceae	Hathi paile pidalu	Herb	Root/tuber	Corm			January - March
183	Unidentified c)	Araceae	Khari pidalu	Herb	Root/tuber	Corm			January - March
184	Unidentified d)	Araceae	Panchmukhi pidalu	Herb	Root/tuber	Corm			
185	Unidentified e)	Zingiberaceae	badeer	Herb	Tender shoot	Rhizome			Spring
186	Trichosanthes cucumerina	Cucurbitaceae	Ban chichinda	Annual	Fruit	Seed		Forest	Autumn
187	Solanum aculeatissum	solanaceae	Chharheta	Annual	Fruit	Seed		Upland	Summer - rainy
188	Unidentified f)		Chnitarik sag	Annual	Shoot tip	Seed		Forest	Spring
189	Unidentified g)		Chuchche palungo	Annual	Leaf and terminal shoot	Seed		Upland	Summer
190	Hibiscus sabdariffa	Malvaceae	Chhuka	Shrub	Leaf, fruits	Seed		Upland	Winter
191	Unidentified h)		Dankarioth	Vine	Tender shoot	stem		Canal	Summer
192	Unidentified i)		Dhungre sag	Annual	Tender shoot	Seed/stem		Lowland	Spring - summer
193	Monochoria hastana	Pontederaceae	Thokara	Herb	leaf,tender shoot	Seed		Canal	Rainy
194	Arisaema orubescens	Araceae	Gurbo	Herb	Corm, shoot	Corm		Upland	Summer- rainy
195	Guizotia abyssinica	Asteraceae	Jhuse til	Annual	Seed	Seed		Upland	Winter
196	Comellina benghalensis	Comellinaceae	Kane bon	Herb	Leaf, shoot	Stem		Upland	Autumn
197	Gmelina arborea	Verbenaceae	Khamari	Tree	Flower	Seed, cutting		Wetland	Summer
198	Thelypteris auriculata	Pteridaceae	Kochaya	Herb	Young shoot	Rhizome		Forest	Spring
199	Malva parviflora	Malvaceae	Kongatahari	Annual	Leaf	Seed		Upland	Winter
200	Coccinea grandis	Cucibitaceae	Kudurani	Climber	Green fruit	Seed, root		Upland	Summer
201	Xeromphis spinosus	Rubiaceae	Main kanda	Tree	Fruit and flower	Seed		Upland	Summer
202	Phragmites maxima	Gramineae	Narkat	Perennial	shoot	Root		Upland	Summer

Table 1. Contd.

203	Lygodium flexuosum	Schizaeaceae	Parandi sag	Herb	Leaf, young shoot	Stem /root	Forest	Spring - summer - rainy
204	Typha latifolia	Typhaceae	Pat	Herb	tender shoot	Rhizome	Marshy	All round year
205	Typha anguistifolia	Typhaceae	Pat (caftail)	Herb	Young leaves	Rhizome	Upland	Summer - rainy
206	Gardenia companiluta	Rubiaceae	Pedar	Perennial	Flower	Seed	Upland	spring
207	Physalis minima	Solanaceae	Photongi	Annual	Fruit	Seed	Upland	Winter
208	Murdania nudiflora	Commelinaceae	Ryau ryau	Annual	young shoot	Seed, root	Cultivated land	Rainy
209	Piper sp.	Piperacae	Pipla	Perennial	Fruit	Seed	forest	Rainy
210	Sagittaria sagittifolia	Alismataceae	Sigangodai	Herb	rhizome	Tuber	Rice field	Winter
212	Diplocyclos palmate	Cucurbitaceae	Titambi	vine	Flower	Seed/root	Upland	Rainy
213	Pteris vittata	Pteridaceae	Urakthewn	Herb	shoot	Rhizome	Canal	spring

Acharya and Acharya, 2010; Joshi et al., 2007; Pant et al., 2005; Shakya et al., 1995; Shrestha and Dhillion, 2006; Sunwar et al., 2006; Upreti et al., 2012
(Joshi et al., 2007). Apart from this, it might have occurred as indigenous vegetable crops are very much location specific, so it's difficult for cultivation and commercialization (Weinberger and Msuya, 2004).

Conservation and commercialization indigenous vegetables

Indigenous vegetable diversity has enormous value for present and future generations, and more strenuous efforts must be made for its conservation and sustainable utilization (Brush, 1995). In the present context, conservation of genetic resources is done through ex-situ or in situ methods (Sthapit et al., 1996). In Nepal, in-situ conservation and domestication of several important indigenous species has been started in indigenous community (Aryal et al., 2009). Scientific cultivation, conservation and sustainable use of indigenous plant species by ethnic communities would be highly advantageous for conservation of rare and endangered plant species and the indigenous knowledge for the future generations (Malla and Chhetri, 2009). Community level seed banking, in
which farming communities take active part in the maintenance, use and exchange of indigenous genetic resources, is one of the ways of in-situ conservation (Rana et al., 1998). Home gardens are living gene banks and a reservoir of plant genetic resources that preserve landraces, cultivars, rare and endangered species as well as species neglected in large-scale agro-ecosystems (Galluzzi et al., 2010).

Participatory variety selection provides an opportunity to adopt different varieties resulting in varietal diversity at household and community level (Sthapit et al., 1996; Joshi and Witcombe, 1996). Awareness program on benefit of genetic resources and need for conservation at different levels:community, Government Organizations, Non Government Organizations, entrepreneurs and consumers may play a great role in conservation of indigenous vegetables (Rana et al., 1998). Local communities who have knowledge of indigenous food plants and their uses should empower economically to involve them in conservation of these plants (Shava, 2005). Identification of markets, marketing channels, marketing mechanisms (Rana et al., 1998) and promotion of value
chains (Will, 2008) for indigenous vegetables at local, regional and national level will ultimately facilitate in expanding and strengthening opportunities for such produce. Diversification of production and consumption habits to include a broader range of plant species, in particular those currently identified as indigenous, can contribute significantly to improved health and nutrition, livelihoods, household food security and ecological sustainability (Jaenicke and Hoschle-Zeledon, 2006).

Promotion of indigenous food crops and their products in domestic as well as wider markets may be the possible approach for increasing household income, which ultimately acts as incentive for conservation and sustainable use of these species (Wunder, 2001). Rural women and indigenous communities hold and maintain the knowledge about gathering locations and seasons, preservation, processing, and culinary uses of such plants may play a great role in conservation and commercialization of indigenous vegetables (Joshi et al., 2007). Research, promotion, extraction, utilization and conservation of indigenous species lead to exploration of new staple crops and motivate
the people to consume in a sustainable manner (Kunwar et al., 2012). In general,Commercialization results in the erosion of varietal diversity (Rana et al., 1998) but if indigenous vegetables are not prepared and consumed, this is the first step to their extinction (Keller, 2004). Commercialization of wild food plants should be accompanied by their cultivation so as to protect them from their over-exploitation which can result in their extinction (Shava, 2005).

CONCLUSION

Vegetables are a significant component of the human diet, and indigenous ones are still important, although they have mostly been neglected in research and development. Indigenous vegetables could make a contribution to world food production because they are well adapted to adverse environmental conditions and generally resistant to pests and pathogens. But, the availability of these vegetables is declined drastically with the introduction of the modern and exotic varieties.
To avoid or minimize the impending genetic and cultural erosion of indigenous vegetables, their germplasm should intensively be collected and conserved. Related indigenous knowledge urgently needs to be documented for serving future generations. Utilization of indigenous vegetables is to be made good option for food security and maintain the biodiversity in Nepal. Adequate priority for indigenous crops in the various plans and policy of a developing country like Nepal can obviously lead to sustainable development and help in tackling the food insecurity situation of the country.

REFERENCES

ABTRACO (2005). Underutilized species policies and strategies: Analysis of existing national policies and legislation that enable or inhibit the wider use of underutilized plant species for food and agriculture in Nepal. Report ABTRACO, Kathmandu, Nepal.
Acharya KP, Acharya R (2010). Eating from the wild: indigenous knowledge on wild edible plants in Parroha VDC of Rupandehi district, Central Nepal. Intl. J. Soc. For. 3(1): 28-48.
Aryal KP, Berg A, Ogle B (2009). Uncultivated Plants and Livelihood Support - A case study from the Chepang people of Nepal. Ethnobot. Res. Appl. 7: 409-422.
Brush SB (1995). In situ Conservation of Landraces in Centres of Crop Diversity. Crop Sci. 35: 346-354.
Dangol DR (2003). Economic uses of forest plant resources in western Chitwan, Nepal. Banko Januaryakari 12(2): 56-64.
Engle LM, Faustino FC (2006). Conserving the indigenous vegetable germplasm of Southeast Asia. ISHS Acta Horticulturae 752: I International Conference on Indigenous Vegetables and Legumes. Prospectus for Fighting Poverty, Hunger and Malnutrition.
FAO (1998). The State of the World's Plant Genetic Resources for Food and Agriculture. Background documentation prepared for the International technical conference on Plant Genetic Resources, Leipzig, Germany, 17-23 Junee, 1996. Rome: Food and Agriculture Organization of the United Nations.
Galluzzi G, Eyzaguirre P, Negri V (2010). Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 19: 3635-3654.

Grivetti LE, Ogle BM (2000). Value of traditional foods in meeting macro and micronutrient needs: The Wild Plant Connection. Nutr. Res. Rev. 13(1): 31-46.
Humphry C, Clegg MS, Keen C, Grivetti LE (1993). Food Diversity and Drought Survival. The Hausa Example. Intl. J. Food Sci. Nutr. 44(1): 1-16.
Jaenicke H, Hoschle-Zeledon I (eds) (2006). Strategic Framework for Underutilized Plant Species Research and Development, with Special Reference to Asia and the Pacific, and to Sub-Saharan Africa. International Centre for Underutilised Crops, Colombo, Sri Lanka and Global Facilitation Unit for Underutilized Species, Rome, Italy. p. 33.
Joshi A, Witcombe J (1996). Farmer participatory crop improvement. II. Participatory variety selection- A case study in India. Exp. Agric. 32: 461-477.
Joshi N, Kehlenbeck K, Maasss BL (2007). Traditional, neglected vegetables of Nepal: Their sustainable utilization for meeting human needs. Conference on international agricultural research for development, Germany.
Keller GB (2004). African Nightshade, eggplant, spider flowerproduction and consumption aspects of traditional vegetables in Tanzania from the farmer's point of view. Goettingen: GeorgAugustust Universitaet (MSc Thesis).
Kunwar RM, Mahat L, Sharma L, Shrestha KP, Kominee H, Bussmann RW (2012). Underutilized plant species in Far West Nepal. J. Mountain Sci. 9(5): 589-600.
Lohar DP, Sthapit BR., Joshi KD (1995). The Convention on Biological Diversity and Appropriate Policy on Plant Genetic Resources in Nepal. Seminar paper No. 95/14. Paper presented at the National Seminar on Appropnate Policy in Nepal on Plant Genetic Resources with Regard to the Convention on Biological Diversity'. 6-7 Aprilil 1995, Kathmandu, Nepal.
Malla B, Chhetri RB (2009). Indigenous knowledge on ethnobotanical plants of Kavrepalanchowk district. Kathmandu University J. Sci. Engr. Technol. 5(2): 96-109.
Manandhar NP (1982). Wild edible plants of Nepal. Bull. Dept. Med. PI., No. 11. Thapathali, Kathmandu, Nepal.
Manandhar NP (1989). Useful Wild Plants of Nepal. Nepal Research Centre Publications No. 14. Steiner, Stuttgart, Germany.
Manandhar NP (2002). Plants and People of Nepal. Timber Press Portland Oregon, USA.
MFSC/GEF/UNDP (2002). Nepal Biodiversity Strategy. Ministry of Forests and Soil Conservation, supported by the Global Environmental Facility and UNDP, Kathmandu, Nepal.
Midmore DJ, Ninen V, Venkataraman R (1991). Household gardening projects in Asia: Past experience and future directions. Asian Vegetable Research and Development Center. Tech. Bull. 19:28.
Pant SR, Dhami NR, Panta IR (2005). Wild edible plants of Lekam area, Darchula, Far-western Nepal. Scientific World 3(3): 73-77.
Rana RB, Joshi KD, Lohar DP (1998). On-farm conservation of indigenous vegetables by strengthening community based seed banking in Seti River Valley, Pokhara, Nepal. LI-BIRD Technical Paper No. 3. Local Initiatives for Biodiversity, Research and Development (LI-BIRD), Pokhara, Nepal.
Schippers R (1997). Domestication of indigenous vegetables for SubSaharan Africa: A strategy paper. African Indigenous Vegetables, Workshop Proceedings, Januaryuary 13-18, Limbe, Cameroon. pp. 125-135.
Shakya SM, Dangol DR, Srivastava A (1995). Exploration of wild or underexploited plant species used as vegetables in some VDC of Chitwan district, Nepal. Research report NRMP/IUCN \&NAHSON. 93-115.
Shava S (2005). Research on Indigenous Knowledge and its Application: A Case of wild food plants of Zimbabwe. Southern African J. Environ. Edu. 22: 73-86.
Shrestha P, Gautam R, Rana RB, Sthapit B (2004). Managing diversity in various ecosystems: Home gardens of Nepal. In: Eyzaguirre PB and Linares OF (eds.) Home Gardens and Agrobiodiversity. Smithsonian, Washington, USA, 95-122.
Shrestha PM, Dhillion SS (2006). Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agroforestry Syst. 66: 55-63.
Siwakoti M, Tiwari S (2007). Emerging needs of wetlands protection for
the Conservation of wild rice biodiversity in Nepal: a Case study from Lumbini area. Sci. World 5(5): 95-99.
Smith GC, Clegg MS, Keen CL, Grivetti LE (1995). Mineral values of selected plant foods common to Southern Burkina Faso and to Niamey, Niger, West Africa. Intl. J. Food Sci. Nutri. 47: 41-53.
Smith GC, Dueker SR, Clifford AJ, Grivetti LE (1996). Carotenoid values of selected plant foods common to Southern Burkina Faso, West Afri. Ecol. Food Nutri. 35: 43-58.
Sthapit BR, Joshi KD, Witcombe JR (1996). Farmer Participatory Crop Improvement. III. Participatory Plant Breeding, a Case Study for Rice in Nepal. Exp. Agric. 32: 479-496
Subhrendu KP, Sills EO (2001). Do tropical forests provide natural insurance? The microeconomics of non-timber forest product collection in the Brazilian Amazon. Land Econ. 77(4): 595-612.
Sunwar S, Thornstrom CG, Subedi A, Bystrom M (2006). Home gardens in western Nepal: opportunities and challenges for on-farm management of agrobiodiversity. Biodivers. Conserv. 15: 4211-4238.
Upreti BR, Ghale Upreti Y (2002). Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. Biodivers. Conserv. 11: 1607-1621.

Upreti Y, Poudel RC, Shrestha KK, Rajbhandary S, Tiwari NN, Shrestha UB, Asselin H (2012). Diversity of use and local knowledge of wild edible plant resources in Nepal. J. Ethnobiol. Ethnomed. 8(16): 1-15.
WCMC (1994). Priorities for Conserving Global Species Richness and Endemism (eds.: Caldecott J.O., Jenkins M.D., Johnson T, Groombridge B). World Conservation Press, Cambridge, UK.
Weinberger K, Msuya J (2004). Indigenous vegetables in TanzaniaSignificance and prospects. Shanhua, Taiwan: AVRDC-The World Vegetable Center, Technical Bulletin No. 31, AVRDC Publication.
Will M (2008). Promoting Value Chains of Neglected and Underutilized Species for Pro-Poor Growth and Biodiversity Conservation. Guidelines and Good Practices. Global Facilitation Unit for Underutilized Species, Rome, Italy.
Wunder S (2001). Poverty alleviation and tropical forests what scope for synergies? World Dev. 29: 1817-1833.

