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In this study we are going to discuss an extended form of Pearson, including the reversed generalized 
Pearson curves distribution as its subfamily, and refer to it as the extended generalized same 
distribution. Because of many difficulties described in the literature in modeling the parameters, we 
propose here a new extended model. The model associated to this heuristic is implemented to validate 
the result of the generalized Pearson family routine in the specific cases. This study is presents same 
applications of Pearson family’s of distributions, and give the new extended, which extends the 
classical Pearson family. Various properties of this new family are investigated and then exploited to 
derive several related results, especially characterizations, in probability. As a motivation, the statistical 
applications of the results based on health related data are included. It is hoped that the findings of this 
work will be useful for the practitioners in various fields of theoretical and applied sciences. 
 
Key words: Pearson and Burr family distribution extended, special, families, goodness of fit. 

 
 
INTRODUCTION 
 
In his original paper, Pearson (1895) identified four types 
of distributions (numbered I through IV) in addition to the 
normal distribution (which was originally known as Type 
V). Rhind (1909) devised a simple way of visualizing the 
parameter space of the Pearson system, which was 
subsequently adopted by Pearson (1916) (Rhind, 1909). 
The Pearson types are characterized by two quantities 

commonly referred to as 
1  and

2 . A Pearson density 

)(xf  is defined to be any valid solution to the differential 

equation (Pearson, 1895): 
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The Pearson family of distributions was designed by 
Pearson between 1890 and 1895. It represents a system 
whereby for every member the probability density 

function )(xf  is composed of twelve families of 

distributions, all of which are solutions to the differential 
equation (Pearson, 1895). 
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The solutions differ in the values of the parameters 

cba ,, and d .  The Pearson system includes the normal, 

Gamma, and Beta distributions among the families. The 
twelve families cover the entire skewness and kurtosis 
plane. The gamma distributions are also referred to as 
Pearson Type III distributions, and they include the chi-
square, exponential, and Erlang distributions, and the 
beta distributions are also referred to as Pearson Type I 
or II distributions (Bagnoli and Bergstrom, 2005). 

A generalization of the Pearson differential Equation (2) 
has appeared in the literature, from which a vast majority 
of continuous probability density functions can be 
generated, known as the generalized Pearson system of 
continuous probability distributions (Mohammad et al., 
2010). 
 
 

PEARSON FAMILIES OF DISTRIBUTIONS 
 

This family of distributions based on the solutions of 
Pearson differential Equation (1). The family was 
proposed by Karl Pearson in 1894 as a response to his 
recognition that not all populations had distributions that 
resembled the normal distribution. He proposed twelve 
types of distribution which are variants of three basic 
distributions. The Pearson family of distributions is made 
up of seven distributions: Type I to VII. It covers any 
specified average, standard deviation, skewness and 
kurtosis. Together they form a 4-parameter family of 
distributions that covers the entire skewness-kurtosis 
region other than the impossible region. The seven types 
are described below: 
 

(i) Type I: Beta Distribution 
(ii) Type II: Special case of beta distribution that is 
symmetrical. 
(iii) Type III: Gamma Distribution. 
(iv) Type IV: Region above Type V. 
(v) Type V: 3 parameter distribution represented by curve  
(vi) Type VI: Region between Gamma and Type V. 
(vii) Type VII: Special case of Type IV that is symmetrical 
 

The special cases can be ignored (II, VII) and (I, III) types 
are alias for distribution already covered. That leaves 
Type IV, V and VI as new distributions. The diagram of 
different distributions of Pearson curves family. Here 

1 =skewness 2; 2 =kurtosis+3. The moments of GS-

distributions of different lines represent combinations of 
all parameters and their relation to third and fourth 

moments through:  (Pearson and Hartley, 
1972). All the distributions below the line representing the 
Type V distributions belong to the Type IV family, and 
therefore, Pearson Type IV distributions. 
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cover a wide region in the skewness-kurtosis plane 
(Figures 1 and 2). The well-known families of continuous 
probability distributions such as the normal and student t 
distributions (known as Pearson Type VII), beta 
distributions (known as Pearson Type I), and gamma 
distributions (known as Pearson Type III) (Mohammad et 
al., 2010). 

Elderton (1907) gave a systematic description of the 
types of Pearson curves. In simplified form, the 
classification by types is as follows: 
 
Type I: The distribution function is: 
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with as a particular case the beta distribution of the first 
kind. 
 
Type II: The distribution function is: 
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(a version of a Type-I Pearson curve); a particular case is 
the uniform distribution). 
 

Type III: The distribution function is: 
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Particular cases are the gamma distribution and the chi 
squared distribution. 
 

Type IV: The distribution function is: 
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Type V: The distribution function is: 
 

  )7...(,.........1,0;0,)/(exp)(  pxxkxxf p   

          (7) 
 

(which can be reduced by transformation to Type III). 
 

Type VI: The distribution function is: 
 

   )8...(,.........1,1,1;,)(   qpqpxaaxkxxf
qp 

           (8) 
 

Particular cases are the beta-distribution of the second 
kind and the Fisher (F-distribution). 
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Figure 1. Distributions cover a wide region in the skewness–kurtosis plane. 
 

 
 

 
 

Figure 2. Pearson family distributions cover a wide region in 1  and 2 plane. 

 
 
 
Type VII: The distribution function is: 
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A particular case is the Student distribution. 

Type VIII: The distribution function is: 
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Type IX: The distribution function is: 
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Type X: The distribution function is: 
 

 ,0;,/)(exp)(    xmmxkxf                 (12) 

 

That is, an exponential distribution. 
 
Type XI: The distribution function is: 
 

1;,)(  mxbkxxf m  
                          (13) 

 

a particular case is the Pareto distribution. 
 

Type XII: The distribution function is: 
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(a version of Type I). The most important distributions for 
applications are the Types I, III, VI, and VII. This study 
derives a new family of distributions based on the 
generalized inverse Gaussian distribution. Some 
characteristics of new distribution are obtained 
(Mohammad et al., 2010). 
 
 
EXTENDED GENERALIZED PEARSON FAMILIES OF 
DISTRIBUTIONS 
 
The classical differential equation introduced by Karl 
Pearson during the late 19

th
 century is a special case 

(Mohammad et al., 2010). For details on the Pearson 
system of continuous probability distributions, the 
interested readers are referred to Elderton and Johnson 
(1969) and Johnson et al. (1994), among others. 

The new extended generalized Pearson family of 
distributions is characterized by general differential 
equation and is defined with implicit form. A random 

variable X  that has a probability density function is said 
to have an extended generalized Pearson distribution of 
the following form: 
 

);()(
)(

xfxg
dx

xdf
X

X                                      (15) 

 

where )(xg is integral real function, in particular case  
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(Shakil et al., 2010b). 
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In terms of the model function statistical properties; 
estimation of some parameters of the distribution are 
studied. The Equation (15) has its most general form is: 
 

,0)()()(  xdfdxxfxg XX  
 

Equation (15) is a separable differential equation is a 
first-order ordinary equation that is algebraically reducible 
to a standard differential form in which each of the non-
zero terms contains exactly one variable solution to this 
kind of equation is usually quite straightforward. For 
example, the solution will be, of course we can obtain the 
general solution of above equation as follows: 
 

  cdxxg
xf

xdf

X

X )(
)(

)(
                                 (16) 

 

One way of discovering whether or not a given equation 
is separable is to collect coefficients on the two 
differentials and see if the result can be put in the form: 
 

  cdxxgxf X   )()(ln
 

 

Another way is to solve for a derivative and compare the 
result with  
 

  );()()( xfxgxf XX 


 
 

A general solution of the form can be found by first 
dividing by the product function to separate the variables 
and then integrating can be solved by first multiplying and 
subsequently integrating: 
 

   dxxgcdxxgxf X   )(exp)(exp)(                           (17) 
 

The process of solving a separable equation will often 
involve division by one or more expressions. In such 
cases the results are valid where the divisors are not 
equal to zero but may or may not be meaningful for 
values of the variables for which the division is undefined. 
Such values require special consideration and may lead 

to singular solutions. It implies from the definition of X  

that 0)( xf X ,  x , and we have 



1)( dxxf X . 

An extended generalization of the Pearson differential 
equation has appeared in the different literature, known 
as the generalized Pearson system of continuous 
probability distributions. Equation (17) derives a new 
family of distributions based on the generalized Pearson 
differential equation.  

It is observed that the new distribution is skewed to the 
right and bears most of the properties of skewed 
distributions. Equation (17) develops some new classes 
of continuous probability distributions based on the 
generalized   Pearson   differential  Equation  (15).  Some 
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characteristics of the new distributions are defined. Some 
different families of distributions based on generalized 
Pearson differential Equations (1 to 12). One of these 
systems is the Pearson system. 
 
 

PEARSON, BURR AND JOHNSON SYSTEMS 
 
Probability integrals and percentage points of univariate 
distributions from up to eight different families, having 
common first four moments are compared. The Burr 
distribution has a flexible shape and controllable scale 
and location which makes it appealing to fit to data. Burr 
(1942) chose to work with cdf )(xF  satisfying the Burr 

equation.  
The distribution name comes from Johnson (1949) who 

proposed a system for categorizing distributions, in much 
the same spirit that Pearson did. Johnson's idea was to 
translate distributions to be a function of a unit normal 
distribution, one of the few distributions for which there 
were good tools available at the time to handle (Johnson, 
1965).  

It is frequently used to model insurance claim sizes, 
and is sometimes considered as an alternative to a 
normal distribution when data show slight positive 
skewness. Among interesting observations is the 
remarkable consistency in the standardized upper and 

lower points over considerable regions of the 1  and 

2 plane; also the closeness of agreement between the 

log-normal and non-central t distributions and the 
Pearson Type VI and Type IV curves respectively (Shao 
et al., 2004).  

The Johnson bounded distribution has a range defined 
by the min and max parameters. Combined with its 
flexibility in shape, this makes it a viable alternative to the 
pert, triangle and uniform allows the user to define the 
bounds and pretty much any two statistics for the 
distribution (mode, mean, standard deviation) and will 
return the corresponding distribution parameters.  

We have discussed and introduced the continuous 
versions of the Pearson family, also found the log-
concavity for this family in general cases, and then 
obtained the log-concavity property for each distribution 
that is a member of Pearson family. For the Burr family 
these cases have been calculated, even for each 
distribution that belongs to Burr family. Also, log-
concavity results for distributions such as generalized 
gamma distributions, Feller-Pareto distributions, 
generalized inverse Gaussian distributions and 
generalized Log-normal distributions have been obtained. 
The plots for the cdf, pdf and hazard function, percentile 
points and tables for Pearson’s measures of skewness 
and kurtosis for selected coefficients and parameters 
have been provided (Mohammad et al., 2010). 

It has also been observed that a number of other 
distributions   in  Figure  3  including  those  of  Chou  and 

 
 
 
 
Huang (2004), among others. In what follows, some 
characteristics of our newly proposed distribution, 
including the percentile points, for some selected values 
of parameters, have been provided (Chou and Huang, 
2004). They quite rightly pointed out that the extended 
Burr XII distribution is also known as the generalized 
Weibull distribution. The suggested reference of 
Mudholkar and Huston (1996) provides the reader with 
another perspective for considering our proposed 
extended Burr XII distribution. 

The generalized Weibull distribution, originally named 
in Mudholkar and Huston (1996), is the same as what we 
called the extended Burr XII distribution, where the 
subscripts denote the named distribution-GW: 
generalized Weibull and EBXII: extended Burr XII. The 
Weibull distribution may be generalized in various ways 
and different generalizations may in fact be called the 
generalized Weibull distribution. Sometimes a 
generalized Weibull may be obtained by generalizing 
another distribution such as the Burr XII distribution, and 
the name reflects this perspective. 

More importantly, our study is mainly to promote the 
use of the extended Burr XII distribution (which can also 
be called the generalized Weibull distribution) in the flood 
frequency analysis. We provided the evidence of its 
relationship with several popularly used distributions in 
flood frequency analysis, although there are other related 
distributions. Examples of the Pearson Types V, VI 
distributions are shown in Figure 4 (Shao et al., 2004). 
The Burr distribution is a right-skewed distribution 
bounded at the minimum value of a. b is a scale 
parameter while c and d control its shape Burr (0, 1, c, d) 
is a unit Burr distribution. Examples of the Burr 
distribution are shown in Figure 5 (Yuichi, 1999; Turner, 
1962). 

The Johnson bounded distribution has a range defined 
by the min and max parameters and will return the 
corresponding distribution parameters. Examples of the 
Johnson distribution are given in Figure 6. 

 
 
FITTING PEARSON FAMILIES OF DISTRIBUTIONS 

 
When Pearson developed his family of distributions, the 
inverse cumulative distribution function method can be 
used to generate random variables. Pearson used the 
method of moments, which is not really adequate in many 
cases, but many be used to provide starting values to 
maximum likelihood fitter. 

Those interested in the method should read the text in 
Tukey lambda distribution. This is accomplished by 
computing the inverse of the C.D.F evaluated at a 
uniform random variable (Brawn and Upton, 2007). 
Integrating the P.D. or the exponential 

function  dxxgxf X  )(exp)(  , results in the C.D.F: 
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Figure 3. Distributions cover a wide region in the Pearson type plane. 
 
 
 

 
 

Figure 4. The Pearson Types V, VI distributions with same parameters. 
 
 
 

 

x

dtdttgxF
0

)(exp)(   

 
The inverse can be found performing by the following 
steps: 
 

))(( 1 xFFx   

 

The random variables having density )(xf  may be 

generated by repeatedly calculating )(1 UF 
 for values 

of U  with a uniform density between 0 and 1 (Brawn and 

Upton, 2007). This function can be used for the 
untruncated case, however, we will need a modified 

version that accounts for   in order to generate random 

variables for the truncated case ))(
~

(
~ 1 xFFx  . 

The results from this program can then be compared to 
the calculated values derived from the procedure of 
implementing the Log Pearson Type III distribution.  

The Pearson Type III distribution is one of seven types 
of distributions devised by Karl Pearson (1895), a British 
statistician, Pearson distributions during the 1970’s. The 
estimation of parameters by maximum likelihood 
estimation and method of fitting are discussed 
(Mohammad et al., 2010). 
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Figure 5. The Burr distribution Burr (0, 1, c, d) is a unit with same parameters. 

 
 
 

 
 

Figure 6. The Johnson distribution B (a1, a2, min, max, U) with same parameters. 
 
 
 
APPLICATIONS 
 
The application of Pearson system has advantages in 
capability to many researchers have studied the uses of 
the inverse Gaussian (IG) and the Generalised Inverse 
Gaussian (GIG) distributions in the fields of biomedicine, 
demography, environmental and ecological sciences, 
lifetime data, reliability theory, traffic data, etc (Dadpay et 
al., 2007). 

The selection of a specific statistical distribution as a 
model for describing the population behavior of a given 
variable is seldom a simple problem. One strategy 
consists in testing different distributions (normal, 
lognormal, Weibull, etc.), and selecting the one providing 
the best fit to the observed data and being the most 
parsimonious (Yuichi, 1999). 

This family of distributions is used to derive a closed-
form expression for the Burr system. Many nice 
properties   similar   to   those    of    multivariate    normal 

distributions and allow analyzing scenarios where 
Gaussianity assumption no longer applies. Bagnoli and 
Bergstrom (2005) have obtained log-concavity for 
distributions such as normal, logistic, extreme-value, 
exponential, Laplace, Weibull, power function, uniform, 
gamma, beta, Pareto, log-normal, Student's t, Cauchy 
and F distributions (Johnson, 1965). 

We have discussed and introduced the continuous 
versions of the Pearson family, also found the log-
concavity for this family in general cases, and then 
obtained the log-concavity property for each distribution 
that is a member of Pearson family. For the Burr family, 
these cases have been calculated, even for each 
distribution that belongs to Burr family. Also, log-
concavity results for distributions such as generalized 
gamma distributions, Feller-Pareto distributions, 
generalized inverse Gaussian distributions and 
generalized Log-normal distributions have been obtained. 
These models are used in financial  markets,  given  their 



 

 
 
 
 
ability to be parameterised in a way that has intuitive 
meaning for market traders. A number of models are in 
current uses that capture the stochastic nature of the 
volatility of rates, stocks etc. and this family of 
distributions may prove to be one of the more important 
(Carptenter and Shenton, 1964). In the United States, the 
Log-Pearson III is the default distribution for flood 
frequency analysis (Lee, 2010). 

A new extended generalized Pearson distribution which 
can be used in modelling survival data, reliability 
problems and fatigue life studies is introduced. Its failure 
rate function can be constant, decreasing, increasing, 
upside-down bathtub or bathtub-shaped depending on its 
parameters. It includes as special sub-models the 
exponential distribution, the generalized exponential 
distribution (Gupta and Kundu, 1999). Generalized 
exponential distributions and the extended exponential 
distribution (Gupta and Kundu, 1999). 

A comprehensive account of the mathematical 
properties of the new family of distributions is provided. 
Close form fitting of the unknown parameters of the new 
model for complete sample as well as for censored 
sample is discussed. Estimation of the lambda parameter 
distribution is also considered (Brawn and Upton, 2007). 
After classifying the different qualitative behaviors of the 
S-distribution in parameter space, we show how to obtain 
different families of distributions that accomplish specific 
constraints. One of the most interesting cases is the 
possibility of obtaining distributions that acomplish P(X ≤ 
Xc) = 0. Then, we demonstrate that the quantile solution 
facilitates the use of same distributions in Tukey Lambda 
distributions experiments through the generation of 
random samples (Ramberg et al., 1979). Use Inverse 
closed form we obtain an analytical solution for the 
quantile equation that highly simplifies the use of Pearson 
families of distributions. We show the utility of this 
solution in different applications. 

Alternatively, one can make a choice based on 
theoretical arguments and simply fit the corresponding 
parameters to the observed data. In either case, different 
distributions can give similar results and provide almost 
equivalent models for a given data set. Model selection 
can be more complicated when the goal is to describe a 
trend in the distribution of a given variable. In those 
cases, changes in shape and skewness are difficult to 
represent by a single distributional form (Shakil et al., 
2010a). 

As an alternative to the use of complicated families of 
distributions as models for data, these distributions 
provide a highly flexible mathematical form in which the 
density is defined as a function of the cumulative. New 
extended Pearson families of distributions provide an 
infinity of new possibilities that do not correspond with 
known classical distributions (Seshadri and Wesolowski, 
(2001). Although the utility and performance of this 
general form has been clearly proved in different 
applications, its definition as  a  differential  equation  is  a 
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potential drawback for some problems (Hernandez-
Bermejo and Sorribas, 2001). Finally, we show how to fit 
a new family of distributions to actual data, so that the 
resulting distribution can be used as a statistical model 
for them. 
 
 
EXAMPLE OF PEARSON GOODNESS OF FIT TEST 
FOR A POISSON DISTRIBUTION

 

 
Table 1 presents count data on the number of Larrea 
divaricata plants found in each of 48 sampling quadrants, 
as reported in the Study “Some sampling characteristics 
of plants and arthropods of the Arizona desert,” (Jay, 
1962) (Turner, 1962). For cells 1, 2, 3, 4, and 5, the 
respective observed cell counts are 9, 9, 10, 14, and 6. 

Let Y = number of plants in a quadrant.  Assume that Y 
has a Poisson distribution. We will assume for the 
moment that the six counts in cell 5 were actually 4, 4, 5, 
5, 6, and 6  Based on the observed data, the maximum 
Likelihood estimation for the Poisson parameter is the 
mean of the sample data (Lee, 2010),  
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We want to test whether a Poisson distribution is a good 
fit to the data, using Pearson’s chi-squared test and the 
estimated value of the Poisson parameter. We have n = 

48, and the expected cell counts are   ˆ
jj n , for j 

= 1, 2, 3, 4, 5.  From the Poisson distribution, we have; 
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Then the expected cell frequencies are 
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We want to test the null hypothesis that the cell 
probabilities are those found from a Poisson (2.10) 
distribution v. the alternative hypothesis that they are not;
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Table 1. Data on the number of Larrea divaricata plants. 
 

Observed counts 

Cell 1 2 3 4 5 

Number of plants 0 1 2 3  4 
Frequency 9 9 10 14 6 

 
 
 

we will use  = 0.05. The test statistic is Pearson’s chi-
squared statistic: 
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Since this value is less than the critical value of the test, 
we fail to reject the null hypothesis at the 0.05 level of 
significance.  We do not have sufficient evidence to 
conclude that the data do not fit a Poisson (2.10) 
distribution. 
 
 
CONCUDING REMARKS 
 
The infinite divisibility property of the extended model 
proposed by this study is not completely discussed. It is 
observed in the new distribution that most of properties of 
skewed distributions are oriented to the right and have 
been provided in some cases. Some characteristics of 
the newly proposed distributions are obtained in this 
model. It is found that the general distribution of Pearson 
family show some cases of gamma, log-normal and 
inverse gamma distributions. 

The existence of finite tails is of practical relevance for 
computations involving GS-distributions, for instance, 
integration below the left endpoint when some values of 
parameters lead to computational errors. Similar results 
apply for heavy left tails, which are associated with 
values of same parameters. 
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